1887

Abstract

The family accommodates aerobic, chemoorganotrophic planctomycetes, which inhabit various freshwater ecosystems, wetlands and soils. Here, we describe a novel member of this family, strain PX52, which was isolated from a boreal eutrophic lake in Northern Russia. This isolate formed pink-pigmented colonies and was represented by spherical cells that occurred singly, in pairs or aggregates and multiplied by budding. Daughter cells were highly motile. PX52 was an obligate aerobic chemoorganotroph, which utilized various sugars and some heteropolysaccharides. Growth occurred at pH 5.0–7.5 (optimum pH 6.5) and at temperatures between 10 and 30 °C (optimum 20–25 °C). The major fatty acids were C ɷ7c, C and βOH-C; the major intact polar lipid was trimethylornithine, and the quinone was MK-6. The complete genome of PX52 was 9.38 Mb in size and contained nearly 8000 potential protein-coding genes. Among those were genes encoding a wide repertoire of carbohydrate-active enzymes (CAZymes) including 33 glycoside hydrolases (GH) and 87 glycosyltransferases (GT) affiliated with 17 and 12 CAZy families, respectively. DNA G+C content was 65.6 mol%. PX52 displayed only 86.0–89.8 % 16S rRNA gene sequence similarity to taxonomically described planctomycetes and differed from them by a number of phenotypic characteristics and by fatty acid composition. We, therefore, propose to classify it as representing a novel genus and species, gen. nov., sp. nov. The type strain is strain PX52 (=KCTC 72397=VKM B-3275).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003904
2019-12-04
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.003904/ijsem003904.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003904&mimeType=html&fmt=ahah

References

  1. Kulichevskaya IS, Ivanova AA, Baulina OI, Rijpstra WIC, Sinninghe Damsté JS et al. Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like planctomycete from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. Int J Syst Evol Microbiol 2017;67: 218– 224 [CrossRef]
    [Google Scholar]
  2. Franzmann PD, Skerman VB. Gemmata obscuriglobus, a new genus and species of the budding bacteria. Antonie van Leeuwenhoek 1984;50: 261– 268 [CrossRef]
    [Google Scholar]
  3. Aghnatios R, Cayrou C, Garibal M, Robert C, Azza S et al. Draft genome of Gemmata massiliana sp. nov, a water-borne Planctomycetes species exhibiting two variants. Stand Genomic Sci 2015; 1– 9
    [Google Scholar]
  4. Kulichevskaya IS, Baulina OI, Bodelier PLE, Rijpstra WIC, Damste JSS et al. Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 2009;59: 357– 364 [CrossRef]
    [Google Scholar]
  5. Kulichevskaya IS, Serkebaeva YM, Kim Y, Rijpstra WIC, Damsté JSS et al. Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform planctomycete from northern wetlands. Front Microbiol 2012;3: 146 [CrossRef]
    [Google Scholar]
  6. Seeger C, Butler MK, Yee B, Mahajan M, Fuerst JA et al. Tuwongella immobilis gen. nov., sp. nov., a novel non-motile bacterium within the phylum Planctomycetes. Int J Syst Evol Microbiol 2017;67: 4923– 4929 [CrossRef]
    [Google Scholar]
  7. Ravin NV, Rakitin AL, Ivanova AA, Beletsky AV, Kulichevskaya IS et al. Genome analysis of Fimbriiglobus ruber SP5T, a planctomycete with confirmed chitinolytic capability. Appl Environ Microbiol 2018;84: AEM.02645-17 [CrossRef]
    [Google Scholar]
  8. Brümmer IHM, Felske ADM, Wagner-Döbler I. Diversity and seasonal changes of uncultured Planctomycetales in river biofilms. Appl Environ Microbiol 2004;70: 5094– 5101 [CrossRef]
    [Google Scholar]
  9. Pollet T, Tadonléké RD, Humbert JF. Spatiotemporal changes in the structure and composition of a less-abundant bacterial phylum (Planctomycetes) in two perialpine lakes. Appl Environ Microbiol 2011;77: 4811– 4821 [CrossRef]
    [Google Scholar]
  10. Ivanova AO, Dedysh SN, Abundance DSN. Abundance, diversity, and depth distribution of Planctomycetes in acidic northern wetlands. Front Microbiol 2012;3: 5 [CrossRef]
    [Google Scholar]
  11. Dedysh SN, Ivanova AA. Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiol Ecol 2019;95: fiy227 [CrossRef]
    [Google Scholar]
  12. Wang J, Jenkins C, Webb RI, Fuerst JA. Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl Environ Microbiol 2002;68: 417– 422 [CrossRef]
    [Google Scholar]
  13. Buckley DH, Huangyutitham V, Nelson TA, Rumberger A, Thies JE. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 2006;72: 4522– 4531 [CrossRef]
    [Google Scholar]
  14. Staley JT, Fuerst JA, Giovannoni S, Schlesner H. The Order Planctomycetales and the Genera Planctomyces, Pirellula, Gemmata, and Isosphaera In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications New York, NY: Springer New York; 1992; pp 3710– 3731
    [Google Scholar]
  15. Gerhardt P. Manual of Methods for General Bacteriology American Society for Microbiology; 1981
    [Google Scholar]
  16. Damsté JSS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 2011;77: 4147– 4154 [CrossRef]
    [Google Scholar]
  17. Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Dedysh SN et al. Novel mono-, di-, and trimethylornithine membrane lipids in northern wetland Planctomycetes. Appl Environ Microbiol 2013;79: 6874– 6884 [CrossRef]
    [Google Scholar]
  18. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985;18: 329– 366
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173: 697– 703 [CrossRef]
    [Google Scholar]
  20. Ludwig W et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32: 1363– 1371 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. PHYLIP - phylogeny inference package (version 3.2). Cladistics 1989;5: 164– 166
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef]
    [Google Scholar]
  23. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5: 8365 [CrossRef]
    [Google Scholar]
  24. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42: D206– D214 [CrossRef]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30: 2068– 2069 [CrossRef]
    [Google Scholar]
  26. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11: 119 [CrossRef]
    [Google Scholar]
  27. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011;39: W29– W37 [CrossRef]
    [Google Scholar]
  28. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35: 3100– 3108 [CrossRef]
    [Google Scholar]
  29. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10: 421 [CrossRef]
    [Google Scholar]
  30. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004;32: 11– 16 [CrossRef]
    [Google Scholar]
  31. Apweiler R, Bairoch A, Bougueleret L, Altairac S, Amendolia V et al. The universal protein resource (UniProt) 2009. Nucleic Acids Res 2009;37: D169– D174 [CrossRef]
    [Google Scholar]
  32. Kanehisa M, Sato Y, Morishima K, BlastKOALA MK. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016;428: 726– 731 [CrossRef]
    [Google Scholar]
  33. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2: 142– 148 [CrossRef]
    [Google Scholar]
  34. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2: 117– 134 [CrossRef]
    [Google Scholar]
  35. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36: 996– 1004 [CrossRef]
    [Google Scholar]
  36. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef]
    [Google Scholar]
  37. Ward NL et al. Phylum XXV. Planctomycetes Garrity and Holt 2001, 137 emend. Ward In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual® of Systematic Bacteriology: Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes New York, NY: Springer New York; pp 879– 925
    [Google Scholar]
  38. Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative genomics of four Isosphaeraceae planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4T, Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and Strain SH-PL62. Front Microbiol 2017;8: 412 [CrossRef]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  40. Scheuner C, Tindall BJ, Lu M, Nolan M, Lapidus A et al. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae. Stand Genomic Sci 2014;9: 10 [CrossRef]
    [Google Scholar]
  41. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42: D490– D495 [CrossRef]
    [Google Scholar]
  42. Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR et al. Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS One 2017;12: e0172545 [CrossRef]
    [Google Scholar]
  43. Naumoff DG, Dedysh SN. Bacteria from poorly studied phyla as a potential source of new enzymes: β-galactosidases from Planctomycetes and Verrucomicrobia. Microbiology 2018;87: 796– 805 [CrossRef]
    [Google Scholar]
  44. Elcheninov AG, Menzel P, Gudbergsdottir SR, Slesarev AI, Kadnikov VV et al. Sugar metabolism of the first thermophilic planctomycete Thermogutta terrifontis: comparative genomic and transcriptomic approaches. Front Microbiol 2017;8: 2140 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003904
Loading
/content/journal/ijsem/10.1099/ijsem.0.003904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error