1887

Abstract

A novel aerobic moderately thermophilic bacterium, strain 3753O, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8–2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42–60 °C and pH 6.5–8.5, the optima being 50–54 °C and pH 7.3. Strain 3753O grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO) as the electron donor. The major cellular fatty acid was branched C. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753O was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753O within the previously uncultivated lineage OLB14 in the phylum . Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species gen. nov. sp. nov., within the fam. nov., the ord. nov. and the classis nov. are proposed. The type strain of is 3753O (=VKM B-3389=KTCT 72284).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003902
2019-11-26
2019-12-11
Loading full text...

Full text loading...

References

  1. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017;551:457–463 [CrossRef]
    [Google Scholar]
  2. Yamada T et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 2006;56:1331–1340 [CrossRef]
    [Google Scholar]
  3. Kawaichi S, Ito N, Kamikawa R, Sugawara T, Yoshida T et al. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum 'Chloroflexi' isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int J Syst Evol Microbiol 2013;63:2992–3002 [CrossRef]
    [Google Scholar]
  4. Gupta RS, Chander P, George S. Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; Proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochlorida. Antonie van Leeuwenhoek 2013;103:99–119
    [Google Scholar]
  5. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 2013;63:625–635 [CrossRef]
    [Google Scholar]
  6. Cavaletti L, Monciardini P, Bamonte R, Schumann P, Rohde M et al. New lineage of filamentous, spore-forming, Gram-positive bacteria from soil. Appl Environ Microbiol 2006;72:4360–4369 [CrossRef]
    [Google Scholar]
  7. Dodsworth JA, Gevorkian J, Despujos F, Cole JK, Murugapiran SK et al. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int J Syst Evol Microbiol 2014;64:2119–2127 [CrossRef]
    [Google Scholar]
  8. Garrity GM, Holt JG.Class I. Thermomicrobia class. nov In Boone DR, Castenholtz RW, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag; 2001; p447
    [Google Scholar]
  9. Holt JG, Lewin RA. Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J Bacteriol 1968;95:2407–2408
    [Google Scholar]
  10. Pierson BK, Castenholz RW. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 1974;100:5–24 [CrossRef]
    [Google Scholar]
  11. Pierson BK, Giovannoni SJ, Stahl DA, Castenholz RW. Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 1985;142:164–167 [CrossRef]
    [Google Scholar]
  12. Hanada S, Hiraishi A, Shimada K, Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell Aggregates by Active Gliding Movement. Int J Syst Bacteriol 1995;45:676–681 [CrossRef]
    [Google Scholar]
  13. Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM. Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 2000;50:1529–1537 [CrossRef]
    [Google Scholar]
  14. Hanada S, Matsuura K, Nakamura K, Takaichi S. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 2002;52:187–193 [CrossRef]
    [Google Scholar]
  15. Sekiguchi Y et al. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain bacteria at the subphylum level. Int J Syst Evol Microbiol 2003;53:1843–1851 [CrossRef]
    [Google Scholar]
  16. Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ et al. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol 2013;63:4675–4682 [CrossRef]
    [Google Scholar]
  17. Kale V, Björnsdóttir SH, Frithjonsson OH, Petursdottir SK, Omarsdottir S et al. Litorilinea aerophila gen. nov., sp. nov., an aerobic member of the class Caldilineae, phylum Chloroflexi, isolated from an intertidal hot spring. Int J Syst Evol Microbiol 2013;63:1149–1154 [CrossRef]
    [Google Scholar]
  18. Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 2013;63:86–92 [CrossRef]
    [Google Scholar]
  19. King CE, King GM. Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 2014;64:1244–1251 [CrossRef]
    [Google Scholar]
  20. Sun L, Toyonaga M, Ohashi A, Matsuura N, Tourlousse DM et al. Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi. Int J Syst Evol Microbiol 2016;66:988–996 [CrossRef]
    [Google Scholar]
  21. Yabe S, Sakai Y, Yokota A. Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix. Int J Syst Evol Microbiol 2016;66:2152–2157 [CrossRef]
    [Google Scholar]
  22. Gaisin VA, Kalashnikov AM, Grouzdev DS, Sukhacheva M V, Kuznetsov BB et al. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from a geyser. Int J Syst Evol Microbiol 2017;67:1381–1386
    [Google Scholar]
  23. Pan X, Kage H, Martin K, Nett M. Herpetosiphon gulosus sp. nov., a filamentous predatory bacterium isolated from sandy soil and Herpetosiphon giganteus sp. nov., nom. rev. Int J Syst Evol Microbiol 2017;67:2476–2481 [CrossRef]
    [Google Scholar]
  24. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 2009;59:2692–2697 [CrossRef]
    [Google Scholar]
  25. Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 2013;63:1492–1498 [CrossRef]
    [Google Scholar]
  26. Key TA, Bowman KS, Lee I, Chun J, Albuquerque L et al. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater. Int J Syst Evol Microbiol 2017;67:1366–1373
    [Google Scholar]
  27. Demharter W, Hensel R, Smida J, Stackebrandt E. Sphaerobacter thermophilus gen. nov., sp. nov. a deeply rooting member of the actinomycetes subdivision isolated from Thermophilically treated sewage sludge. Syst Appl Microbiol 1989;11:261–266 [CrossRef]
    [Google Scholar]
  28. Hugenholtz P, Stackebrandt E. Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 2004;54:2049–2051 [CrossRef]
    [Google Scholar]
  29. Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 2012;6:2245–2256 [CrossRef]
    [Google Scholar]
  30. King CE, King GM. Thermomicrobium carboxidum sp. nov., and Thermorudis peleae gen. nov., sp. nov., carbon monoxide-oxidizing bacteria isolated from geothermally heated biofilms. Int J Syst Evol Microbiol 2014;64:2586–2592 [CrossRef]
    [Google Scholar]
  31. Houghton KM, Morgan XC, Lagutin K, MacKenzie AD, Vyssotskii M et al. Thermorudis pharmacophila sp. nov., a novel member of the class Thermomicrobia isolated from geothermal soil, and emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus. Int J Syst Evol Microbiol 2015;65:4479–4487 [CrossRef]
    [Google Scholar]
  32. Sutcliffe IC. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 2010;18:464–470 [CrossRef]
    [Google Scholar]
  33. Keppen OI, Ivanovsky RN, Streshinskaya GM, Lebedeva NV, Shashkov AS et al. The cell wall of the filamentous anoxygenic phototrophic bacterium Oscillochloris trichoides. Microbiology 2018;164:57–64 [CrossRef]
    [Google Scholar]
  34. Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J 2019;13:1801–1813 [CrossRef]
    [Google Scholar]
  35. Wu D, Raymond J, Wu M, Chatterji S, Ren Q et al. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 2009;4:e4207 [CrossRef]
    [Google Scholar]
  36. Berg IA, Keppen OI, Krasil’nikova EN, Ugol’kova NV, Ivanovsky RN. Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology 2005;74:258–264 [CrossRef]
    [Google Scholar]
  37. Gaisin VA, Burganskaya EI, Grouzdev DS, Osipova NS, Ashikhmin AA et al.Candidatus Oscillochloris fontis’: a novel mesophilic phototrophic Chloroflexota bacterium belonging to the ubiquitous Oscillochloris genus. FEMS Microbiol Lett 2019;366: [CrossRef]
    [Google Scholar]
  38. Herter S, Fuchs G, Bacher A, Eisenreich W. A bicyclic autotrophic CO2 pathway in Chloroflexus aurantiacus. J Biol Chem 2002;277:20277–20283 [CrossRef]
    [Google Scholar]
  39. van der Meer MTJ, Schouten S, Bateson MM, Nübel U, Wieland A et al. Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park. Appl Environ Microbiol 2005;71:3978–3986 [CrossRef]
    [Google Scholar]
  40. Kochetkova TV, Toshchakov SV, Zayulina KS, Elcheninov AG, Zavarzina DG et al. Hot in cold: microbial life in the hottest springs in permafrost. Microbial Ecology2019:(submitted)
    [Google Scholar]
  41. Kevbrin VV, Zavarzin GA. The effect of sulfur compounds on growth of the halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology 1992;61:563–567
    [Google Scholar]
  42. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238:2882–2886
    [Google Scholar]
  43. Yusupov VI, Gorlenko MV, Cheptsov VS, Minaev NV, Churbanova ES et al. Laser engineering of microbial systems. Laser Phys Lett 2018;15:65604 [CrossRef]
    [Google Scholar]
  44. Cheptsov VS, Churbanova ES, Yusupov VI, Gorlenko MV, Lysak LV et al. Laser printing of microbial systems: effect of absorbing metal film. Lett Appl Microbiol 2018;67:544–549 [CrossRef]
    [Google Scholar]
  45. Hynes WF, Cady NC, Chacón J, Harcombe WR, Segrè D et al. Bioprinting microbial communities to examine interspecies interactions in time and space. Biomed Phys Eng Express 2018
    [Google Scholar]
  46. Antoshin AA, Churbanov SN, Minaev NV, Zhang D, Zhang Y et al. LIFT-bioprinting, is it worth it?. Bioprinting 2019;15:e00052 [CrossRef]
    [Google Scholar]
  47. Gorlenko MV, Chutko EA, Churbanova ES, Minaev NV, Kachesov KI et al. Laser microsampling of soil microbial community. J Biol Eng 2018;12:27 [CrossRef]
    [Google Scholar]
  48. Yusupov VI, Zhigar'kov VS, Churbanova ES, Chutko EA, Evlashin SA et al. Laser-Induced transfer of gel microdroplets for cell printing. Quantum Electron. 2017;47:1158–1165 [CrossRef]
    [Google Scholar]
  49. Sokolova TG et al. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 2004;54:2353–2359 [CrossRef]
    [Google Scholar]
  50. Frolov EN, Zayulina KS, Kopitsyn DS, Kublanov IV, Bonch-Osmolovskaya EA et al. Desulfothermobacter acidiphilus gen. nov., sp. nov., a thermoacidophilic sulfate-reducing bacterium isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 2018;68:871–875 [CrossRef]
    [Google Scholar]
  51. Sorokin DY, Toshchakov SV, Kolganova TV, Kublanov IV. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 2015;6:942 [CrossRef]
    [Google Scholar]
  52. Podosokorskaya OA, Kadnikov VV, Mardanov AV, Mardanov AV, Merkel AY et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Gnavibacteriaei. Environ Microbiol 2013;15:1759–1771 [CrossRef]
    [Google Scholar]
  53. Frolov EN, Kublanov I V, Toshchakov S V, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017;67:1482–1485
    [Google Scholar]
  54. Slobodkina GB, Panteleeva AN, Kostrikina NA, Kopitsyn DS, Bonch-Osmolovskaya EA et al. Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 2013;17:833–839 [CrossRef]
    [Google Scholar]
  55. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef]
    [Google Scholar]
  56. Chevreux B et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 2004;14:1147–1159 [CrossRef]
    [Google Scholar]
  57. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019;47:D666–D677 [CrossRef]
    [Google Scholar]
  58. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017;45:W30–W35 [CrossRef]
    [Google Scholar]
  59. Liu J, Fu K, Wu C, Qin K, Li F et al. “In-Group” Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018;8:139 [CrossRef]
    [Google Scholar]
  60. Guffanti AA, Wei Y, Rood SV, Krulwich TA. An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 2002;45:145–153 [CrossRef]
    [Google Scholar]
  61. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–W21 [CrossRef]
    [Google Scholar]
  62. Fouts DE. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 2006;34:5839–5851 [CrossRef]
    [Google Scholar]
  63. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018;46:W246–W251 [CrossRef]
    [Google Scholar]
  64. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 2015;13:722–736 [CrossRef]
    [Google Scholar]
  65. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D596 [CrossRef]
    [Google Scholar]
  66. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017
    [Google Scholar]
  67. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  68. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 2015;10:1–6 [CrossRef]
    [Google Scholar]
  69. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  70. Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 2007;7:965–968 [CrossRef]
    [Google Scholar]
  71. SQ L, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25:1307–1320
    [Google Scholar]
  72. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef]
    [Google Scholar]
  73. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61:539–542 [CrossRef]
    [Google Scholar]
  74. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016;8:12–24 [CrossRef]
    [Google Scholar]
  75. Rodriguez-R L, Konstantinidis K. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr
    [Google Scholar]
  76. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria. Int J Syst Evol Microbiol 2011;61:903–910 [CrossRef]
    [Google Scholar]
  77. White DC, Geyer R, Peacock AD, Hedrick DB, Koenigsberg SS et al. Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. Appl Environ Microbiol 2005;71:8426–8433 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003902
Loading
/content/journal/ijsem/10.1099/ijsem.0.003902
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error