1887

Abstract

One Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, and coccobacilli-shaped strain, designated c10Ua161M, was isolated from a urine sample from a reproductive-age healthy woman. Comparative 16S rRNA gene sequence analysis indicated that strain c10Ua161M belonged to the genus . Phylogenetic analysis based on and gene sequences strongly supported a clade encompassing strains c10Ua161M and eight other strains from public databases, distinct from currently recognized species of the genus Average Nucleotide Identity (ANI) and Genome-to-Genome Distance Calculator (GGDC), showed 87.9 and 34.3 % identity to the closest relative , respectively. The major fatty acids of strain c10Ua161M were Cω (65.0%), C (17.8%), and summed feature 8 (10.2 %; comprising Cω7, and/or Cω6). The DNA G+C content of the strains is 34.2 mol%. On the basis of data presented here, strain c10Ua161M represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is c10Ua161M (=CECT 9755=DSM 108704).

Keyword(s): genome , rpoA , fatty acid , pheS and 16S rRNA
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003901
2020-01-17
2020-02-28
Loading full text...

Full text loading...

References

  1. Hammes WP, Hertel C. Genus I. Lactobacillus In Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. (editors) Bergey's Manual of Systematic Bacteriology3, 2nd ed. New York: Springer; 2009; pp 465– 510
    [Google Scholar]
  2. Giraffa G, Chanishvili N, Widyastuti Y. Importance of lactobacilli in food and feed biotechnology. Res Microbiol 2010;161: 480– 487 [CrossRef]
    [Google Scholar]
  3. Salvetti E, O'Toole PW. The genomic basis of lactobacilli as health-promoting organisms. Microbiol Spectr 2017;5: [CrossRef]
    [Google Scholar]
  4. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards et al. Statement on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 9: suitability of taxonomic units notified to EFSA until September 2019. EFSA Journal2019: 5555
    [Google Scholar]
  5. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017;41: S27– S48 [CrossRef]
    [Google Scholar]
  6. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 2014;5: e01283– 14 [CrossRef]
    [Google Scholar]
  7. Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 2014;52: 871– 876 [CrossRef]
    [Google Scholar]
  8. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018;46: D851– D860 [CrossRef]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  13. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007;57: 2777– 2789 [CrossRef]
    [Google Scholar]
  14. Salvetti E, Harris HMB, Felis GE, O'Toole PW. Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification. Appl Environ Microbiol 2018;84: e00993– 18 [CrossRef]
    [Google Scholar]
  15. Jung MY, Lee SH, Lee M, Song JH, Chang JY et al. Isolated from scallion kimchi. Int J Syst Evol Microbiol 2017;67: 4936– 4942
    [Google Scholar]
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  17. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016;8: 12– 24 [CrossRef]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  19. Ramasamy D, Mishra AK, Lagier J-C, Padhmanabhan R, Rossi M et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014;64: 384– 391 [CrossRef]
    [Google Scholar]
  20. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9: 2 [CrossRef]
    [Google Scholar]
  21. Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M et al. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013;63: 2526– 2531 [CrossRef]
    [Google Scholar]
  22. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38: 358– 361 [CrossRef]
    [Google Scholar]
  23. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982;16: 584– 586
    [Google Scholar]
  24. Morita H, Shimazu M, Shiono H, Toh H, Nakajima F et al. Lactobacillus equicursoris sp. nov., isolated from the faeces of a thoroughbred racehorse. Int J Syst Evol Microbiol 2010;60: 109– 112 [CrossRef]
    [Google Scholar]
  25. Lawson PA, Wacher C, Hansson I, Falsen E, Collins MD et al. Lactobacillus psittaci sp. nov., isolated from a hyacinth macaw (Anodorhynchus hyacinthinus). Int J Syst Evol Microbiol 2001;51: 967– 970 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003901
Loading
/content/journal/ijsem/10.1099/ijsem.0.003901
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error