1887

Abstract

A Gram-stain-negative, non-motile, coccobacillus-shaped bacterium, designated CPCC 101021, was isolated from a sandy soil sample collected from Badain Jaran desert, China. Its 16S rRNA gene sequence was closely related to those of members of the genus showing high similarities with THG-N2.22 (98.0 %), KCTC 42542 (97.9 %), YW11 (97.9 %) and S1 (97.8 %). In the phylogenetic tree based on 16S rRNA gene sequences, strain CPCC 101021 formed a distinct subclade with KCTC 42542 within the genus . Growth of the isolate occurred at 15–37 °C and pH 6.0–8.5, with optimal growth at 30 °C and pH 7.0. The major cellular fatty acids were Cω, summed feature 8 (Cωc/Cω), summed feature 3 (Cωc/Cω) and Cω. Q-10 was detected as the main component in the respiratory quinone system, with Q-9 as a minor component. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminolipid and an unidentified glycolipid were found in the polar lipid profile. The genomic DNA G+C content was 68.7 mol%. The average nucleotide identity was 84.6 % when comparing the draft genome sequences of strain CPCC 101021 with KCTC 42542. On the basis of genotypic, chemotaxonomic and phenotypic characteristics, strain CPCC 101021 is proposed to represent a novel species of the genus with the name sp. nov. Strain CPCC 101021 (=J1A743=KCTC 62043) is the type strain of the species.

Funding
This study was supported by the:
  • Yu-Qin Zhang , National Natural Science Foundation of China , (Award 31670010)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003898
2019-12-20
2020-11-24
Loading full text...

Full text loading...

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283
    [Google Scholar]
  2. Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E. Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal Dialysis. J Clin Microbiol 2000; 38:456–457
    [Google Scholar]
  3. McLean TW, Rouster-Stevens K, Woods CR, Shetty AK. Catheter-Related bacteremia due toRoseomonas species in pediatric hematology/oncology patients. Pediatr Blood Cancer 2006; 46:514–516 [CrossRef]
    [Google Scholar]
  4. Subudhi CPK, Adedeji A, Kaufmann ME, Lucas GS, Kerr JR. Fatal Roseomonas gilardii bacteremia in a patient with refractory blast crisis of chronic myeloid leukemia. Clin Microbiol Infect 2001; 7:573–575 [CrossRef]
    [Google Scholar]
  5. Han XY, Pham AS, Tarrand JJ, Rolston KV, Helsel LO et al. Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp. nov. and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 2003; 120:256–264 [CrossRef]
    [Google Scholar]
  6. Yoo SH, Weon HY, Noh HJ, Hong SB, Lee CM et al. Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1482–1485 [CrossRef]
    [Google Scholar]
  7. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ et al. Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 2013; 63:2334–2337 [CrossRef]
    [Google Scholar]
  8. Hyeon JW, Jeon CO. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner. Int J Syst Evol Microbiol 2017; 67:4039–4044 [CrossRef]
    [Google Scholar]
  9. Kim MC, Rim S, Pak S, Ren L, Zhang Y et al. Roseomonas arcticisoli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2016; 66:4057–4064
    [Google Scholar]
  10. Gallego V, Sanchez-Porro C, García MT, Ventosa A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2291–2295 [CrossRef]
    [Google Scholar]
  11. Baik KS, Park SC, Choe HN, Kim SN, Moon J-H et al. Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2012; 62:3024–3029 [CrossRef]
    [Google Scholar]
  12. Subhash Y, Lee S-S. Roseomonas suffusca sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2017; 67:2390–2396 [CrossRef]
    [Google Scholar]
  13. Venkata Ramana V, Sasikala C, Takaichi S, Ramana CV. Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 2010; 33:198–203 [CrossRef]
    [Google Scholar]
  14. Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M et al. Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 2008; 54:167–171 [CrossRef]
    [Google Scholar]
  15. Jiang CY et al. Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2006; 56:25–28 [CrossRef]
    [Google Scholar]
  16. Yan ZF, Lin P, Li CT, Kook MC, Wang QJ. et al. ​Roseomonas hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017; 67:2873–2878
    [Google Scholar]
  17. Fang XM, Bai JL, Zhang DW, Su J, Zhao LL et al. Roseomonas globiformis sp. nov., an airborne bacteria isolated from an urban area of Beijing. Int J Syst Evol Microbiol 2018; 68:3301–3306 [CrossRef]
    [Google Scholar]
  18. Yuan LJ, Zhang YQ, Guan Y, Wei YZ, Li QP et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008; 58:1180–1185 [CrossRef]
    [Google Scholar]
  19. Dong L, Ming H, Yin YR, Duan YY, Zhou EM et al. Roseomonas alkaliterrae sp. nov., isolated from an alkali geothermal soil sample in Tengchong, Yunnan, south-west China. Antonie van Leeuwenhoek 2014; 105:899–905 [CrossRef]
    [Google Scholar]
  20. Reddy GSN, Nagy M, Garcia-Pichel F. Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 2006; 56:51–58 [CrossRef]
    [Google Scholar]
  21. Jin R, Su J, Liu HY, Wei YZ, Li QP et al. Description of Belnapia rosea sp. nov. and emended description of the genus Belnapia Reddy et al. 2006. Int J Syst Evol Microbiol 2012; 62:705–709 [CrossRef]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef]
    [Google Scholar]
  24. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series) 20 Manhattan, NY: Academic Press; 1985 pp 173–199
    [Google Scholar]
  25. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef]
    [Google Scholar]
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef]
    [Google Scholar]
  30. Kimura M. The Neutral Theory of Molecular Evolution Cambridge, Cambridgeshire: Cambridge University Press; 1983
    [Google Scholar]
  31. Kluge AG, Farris JS. Quantitative Phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  35. Kim M, HS O, Park SC, Jongsik C. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003898
Loading
/content/journal/ijsem/10.1099/ijsem.0.003898
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error