1887

Abstract

In this study, we report a novel Gram-negative bacterium, designated as strain CS412, isolated from deep-sea sediment collected in a cold seep area of the South China Sea. Growth of strain CS412 occurred at 4–40 °C (optimum, 28 °C), pH 5.0–11.0 (optimum, pH 6.0) and with 0–19 % (w/v) NaCl (optimum, 1–2 %). Phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain CS412 belonged to the genus . The closest phylogenetic neighbours of strain CS412 were HS225 (96.9 %), NTU-104 (96.8%), NKSG1 (96.4%) and -M3 (96.3 %). The genomic DNA G+C content of strain CS412 was 58.0 mol%. The principal respiratory quinone was ubiquinone-9 (Q-9). The polar lipids of CS412 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipidand and four glycolipids. The major fatty acids of CS412 contained cyclo-Cω8, C, Cω7 and Cω7 11-methyl. The results of phylogenetic, physiological, biochemical and morphological analyses suggested that strain CS412 represents a novel species of the genus , and the name sp. nov. is proposed with the type species CS412 (=CCTCC AB 2019197=KCTC 72475).

Keyword(s): Marinobacter , deep sea and cold seep
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003895
2019-11-28
2019-12-09
Loading full text...

Full text loading...

References

  1. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42: 568– 576 [CrossRef]
    [Google Scholar]
  2. Boujida N, Palau M, Charfi S, Manresa À, Skali Senhaji N et al. Marinobacter maroccanus sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2019;69: 227– 234 [CrossRef]
    [Google Scholar]
  3. Cao J, Liu P, Liu R, Su H, Wei Y et al. Marinobacter profundi sp. nov., a slightly halophilic bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Antonie van Leeuwenhoek 2019;112: 425– 434 [CrossRef]
    [Google Scholar]
  4. Xu S, Wang D, Wei Y, Cui Q, Li W. Marinobacter bohaiensis sp. nov., a moderate halophile isolated from benthic sediment of the Bohai sea. Int J Syst Evol Microbiol 2018;68: 3534– 3539 [CrossRef]
    [Google Scholar]
  5. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006;56: 2653– 2656 [CrossRef]
    [Google Scholar]
  6. Handley KM, Héry M, Lloyd JR. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 2009;59: 886– 892 [CrossRef]
    [Google Scholar]
  7. Xu XW, Wu YH, Wang C-S, Yang JY, Oren A et al. Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 2008;58: 637– 640 [CrossRef]
    [Google Scholar]
  8. Ng HJ, López-Pérez M, Webb HK, Gomez D, Sawabe T et al. Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS One 2014;9: 1– 11 [CrossRef]
    [Google Scholar]
  9. Kim JO, Lee HJ, Han S-I, Whang KS. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2017;67: 460– 465 [CrossRef]
    [Google Scholar]
  10. Wang CY, Ng CC, Tzeng WS, Shyu YT. Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2009;59: 2605– 2609 [CrossRef]
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: John Wiley & Sons; 1991; pp 115– 147
    [Google Scholar]
  12. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  14. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29: 2607– 2618 [CrossRef]
    [Google Scholar]
  15. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25: 955– 964 [CrossRef]
    [Google Scholar]
  16. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35: 3100– 3108 [CrossRef]
    [Google Scholar]
  17. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  19. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 5: 1861– 1868
    [Google Scholar]
  20. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55: 1149– 1153 [CrossRef]
    [Google Scholar]
  21. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990;20: 1– 6
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195: 413– 418 [CrossRef]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64: 346– 351 [CrossRef]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003895
Loading
/content/journal/ijsem/10.1099/ijsem.0.003895
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error