1887

Abstract

A Gram-stain-positive, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterium, designated as strain G-1, was isolated from farmland soil sampled in in Fuyang, Anhui Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain G-1 was closely related to 2-36 (97.7 % similarity). Strain G-1 contained iso-C, Cω6, iso-C and iso-C as the predominant fatty acids. The polar lipids of strain G-1 were diphosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, an unidentified lipid and two unidentified glycolipids. The predominant respiratory quinone of strain G-1 was MK-9(H). The cell wall contained -diaminopimelic acid as the diagnostic diamino acid. The G+C content of the genomic DNA based on genome calculations was 64.2 mol%. Average nucleotide identity and the digital DNA–DNA hybridization values for the draft genomes between strain G-1 and strain 2-36 were 75.7 and 20.2 %, respectively. On the basis of phenotypic and phylogenetic data, strain G-1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is G-1 (=CCTCC AB2019021=KCTC 49258).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31670112)
    • Principle Award Recipient: Qing Hong
  • National Key R & D Program of China (Award 2017YFD0800702)
    • Principle Award Recipient: Qing Hong
  • Opening Fund of Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base (Award 028074911709)
    • Principle Award Recipient: Qing Hong
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003893
2019-12-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/1152.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003893&mimeType=html&fmt=ahah

References

  1. Huang J, Li J, Cao M, Liao SJ, Wang GJ. Cumulibacter manganitolerans gen. nov., sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2017; 67:2646–2652 [View Article]
    [Google Scholar]
  2. Urzì C, Salamone P, Schumann P, Rohde M, Stackebrandt E. Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 2004; 54:253–259 [View Article]
    [Google Scholar]
  3. Montero-Calasanz MDC, Meier-Kolthoff JP, Zhang D-F, Yaramis A, Rohde M et al. Genome-Scale Data Call for a Taxonomic Rearrangement of Geodermatophilaceae . Front Microbiol 2017; 8:2501 [View Article]
    [Google Scholar]
  4. Zhang YQ, Chen J, Liu HY, Zhang YQ, Li WJ et al. Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 2011; 61:190–193 [View Article]
    [Google Scholar]
  5. Reddy GSN, Potrafka RM, Garcia-Pichel F. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int J Syst Evol Microbiol 2007; 57:2014–2020 [View Article]
    [Google Scholar]
  6. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Rv. ed. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  7. Lane DL. 16S/23S rRNA sequencing.. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics United Kingdom: Wiley, Chichester; 1991 pp 115–175
    [Google Scholar]
  8. Yoon SH, SM H, Kwon S. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  10. Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2017; 33:1870–1874
    [Google Scholar]
  11. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  17. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article]
    [Google Scholar]
  18. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. Kegg for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012; 40:D109–D114 [View Article]
    [Google Scholar]
  19. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article]
    [Google Scholar]
  20. RQ L, Yu C, YR L, Lam TW, Yiu SM et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967
    [Google Scholar]
  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  23. Lee DG, Trujillo ME, Kang S, Nam JJ, Kim YJ. Epidermidibacterium keratini gen. nov., sp. nov., a member of the family Sporichthyaceae, isolated from keratin epidermis. Int J Syst Evol Microbiol 2018; 68:745–750 [View Article]
    [Google Scholar]
  24. Lee SD. Antricoccus suffuscus gen. nov., sp. nov., isolated from a natural cave. Int J Syst Evol Microbiol 2015; 65:4410–4416 [View Article]
    [Google Scholar]
  25. Qin S, Bian GK, Zhang YJ, Xing K, Cao CL et al. Modestobacter roseus sp. nov., an endophytic actinomycete isolated from the coastal halophyte Salicornia europaea Linn., and emended description of the genus Modestobacter . Int J Syst Evol Microbiol 2013; 63:2197–2202 [View Article]
    [Google Scholar]
  26. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  27. Normand P. Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 2006; 56:2277–2278 [View Article]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  29. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  31. Jiang WK, Lu MY, Cui MD, Wang X, Wang H et al. Terrimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2018; 68:819–823 [View Article]
    [Google Scholar]
  32. Zhang H, Cheng MG, Sun B, Guo SH, Song M et al. Flavobacterium suzhouense sp. nov., isolated from farmland river sludge. Int J Syst Evol Microbiol 2015; 65:370–374 [View Article]
    [Google Scholar]
  33. Qu JH, Hui M, Qu JY, Wang FF, Li HF et al. Geodermatophilus taihuensis sp. nov., isolated from the interfacial sediment of a eutrophic lake. Int J Syst Evol Microbiol 2013; 63:4108–4112 [View Article]
    [Google Scholar]
  34. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology, 3rd edn. . Washington, DC: American Society for Microbiology; 2007 pp 19–33
    [Google Scholar]
  35. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  36. Zhang H, Zhang J, Song M, Cheng MG, Wu YD et al. Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 2015; 65:3517–3521 [View Article]
    [Google Scholar]
  37. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  38. Nishijima M, Araki-Sakai M, Sano H. Identification of isoprenoid quinones by Frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 1997; 28:113–122 [View Article]
    [Google Scholar]
  39. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–206
    [Google Scholar]
  40. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 1990; 20:1–6
    [Google Scholar]
  42. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477
    [Google Scholar]
  43. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article]
    [Google Scholar]
  44. Montero-Calasanz MdelC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003893
Loading
/content/journal/ijsem/10.1099/ijsem.0.003893
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error