1887

Abstract

An alginate lyase-excreting bacterium, designated strain HB161718, was isolated from coastal sand collected from Tanmen Port in Hainan, PR China. Cells were Gram-stain-negative rods and motile with a single polar flagellum. Its major isoprenoid quinone was ubiquinone 8 (Q-8), and its cellular fatty acid profile mainly consisted of C ω7 and/or C ω6, C ω6 and/or C ω7, C, C 10-methyl and C N alcohol. The G+C content of the genomic DNA was 44.1 mol%. 16S rRNA gene sequence analysis suggested that strain HB161718 belonged to the genus , sharing 99.5, 99.4, 99.2, 98.9 and 98.5 % sequence similarities to its closest relatives, JCM 20772, 9a2, H17, SW-47 and DE, respectively. The low values of DNA–DNA hybridization and average nucleotide identity showed that it formed a distinct genomic species. The combined phenotypic and molecular features supported the conclusion that strain HB161718 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HB161718 (=CGMCC 1.13585=JCM 32687).

Funding
This study was supported by the:
  • Key Research and Development Project of Hainan Province (Award ZDYF2019133)
    • Principle Award Recipient: Shixiang Bao
  • Key Research and Development Project of Hainan Province (Award ZDYF2017131)
    • Principle Award Recipient: Huiqin Huang
  • Financial Fund of the Ministry of Agriculture and Rural Affairs of China (Award NFZX2018)
    • Principle Award Recipient: Yonghua Hu
  • Central Public-interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (Award 1630052016011)
    • Principle Award Recipient: Huiqin Huang
  • Central Public-interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (Award 19CXTD-32)
    • Principle Award Recipient: Yonghua Hu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003884
2020-01-14
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1516.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003884&mimeType=html&fmt=ahah

References

  1. Wong TY, Preston LA, Schiller NL. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 2000; 54:289–340 [View Article]
    [Google Scholar]
  2. Zhu B, Yin H. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 2015; 6:125–131 [View Article]
    [Google Scholar]
  3. Wang M, Chen L, Zhang Z, Wang X, Qin S et al. Screening of alginate lyase-excreting microorganisms from the surface of brown algae. AMB Express 2017; 7:74–82 [View Article]
    [Google Scholar]
  4. Kodama K, Shiozawa H, Ishii A. Alteromonas rava sp. nov., a marine bacterium that produces a new antibiotic, thiomarinol.. Ann Rep Sankyo Res Lab 1993; 45:131–136
    [Google Scholar]
  5. Wigglesworth-Cooksey B, Cooksey KE, Long R. Antibiotic from the marine environment with antimicrobial fouling activity. Environ Toxicol 2007; 22:275–280 [View Article]
    [Google Scholar]
  6. Martínez-Checa F, Bćjar V, Llamas I, Del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2005; 55:2385–2390 [View Article]
    [Google Scholar]
  7. Barbeyron T, Zonta E, Le Panse S, Duchaud E, Michel G. Alteromonas fortis sp. nov., a non-flagellated bacterium specialized in the degradation of iota-carrageenan, and emended description of the genus Alteromonas . Int J Syst Evol Microbiol 2019; 69:2514–2521 [View Article]
    [Google Scholar]
  8. Hanna K, Heike MF, Richard LH, Meinhard S, Matthias W. Adaptations of Alteromonas sp. 76-1 to polysaccharide degradation: A CAZyme plasmid for ulvan degradation and two alginolytic systems. Front Microbiol 2019; 10:504–515
    [Google Scholar]
  9. Raguénès G, Cambon-Bonavita MA, Lohier JF, Boisset C, Guezennec J. A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr Microbiol 2003; 46:448–452 [View Article]
    [Google Scholar]
  10. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015; 65:1498–1503 [View Article]
    [Google Scholar]
  11. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110:402–429
    [Google Scholar]
  12. Baumann P, Baumann L, Bowditch RD, Beaman B. Taxonomy of Alteromonas: A. nigrifaciens sp. nov., nom. rev.; A. macleodii; and A. haloplanktis . Int J Syst Bacteriol 1984; 34:145–149 [View Article]
    [Google Scholar]
  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  14. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  17. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article]
    [Google Scholar]
  18. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  21. Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii . Int J Syst Evol Microbiol 2004; 54:571–576 [View Article]
    [Google Scholar]
  22. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved lists 1980). Int J Syst Evol Microbiol 2008; 58:2589–2596 [View Article]
    [Google Scholar]
  23. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman sea. Antonie van Leeuwenhoek 2013; 103:877–884 [View Article]
    [Google Scholar]
  24. Yoon J-H, Kim I-G, Kang KH, Oh T-K, Park Y-H et al. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1625–1630 [View Article]
    [Google Scholar]
  25. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015; 107:119–132 [View Article]
    [Google Scholar]
  26. Takeshita S, Oda T, Muramatsu T. An improved plate method, in the presence of calcium chloride or sulfuric acid, for simultaneous detection of alginate lyases. Agric Biol Chem 1991; 55:2637–2638
    [Google Scholar]
  27. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  28. Komagata K, Suzuki KI. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  29. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Ruan JS. A rapid determination method for phosphate lipids. Microbiol China 2006; 37:190–193
    [Google Scholar]
  32. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365–8370 [View Article]
    [Google Scholar]
  33. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  34. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50:1095–1102 [View Article]
    [Google Scholar]
  35. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–73 [View Article]
    [Google Scholar]
  37. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003884
Loading
/content/journal/ijsem/10.1099/ijsem.0.003884
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error