1887

Abstract

One aerobic, Gram-stain-negative, rod-shaped bacterium, designated strain RB1R5, was isolated from Renlongba glacier in Tibet Autonomous Region, China. Growth was observed at 4–25 °C and pH 7.0–8.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RB1R5 belongs to the genus , and its closest relatives are IMCC26026 and CCM 8827 with 97.75 and 97.42% gene sequence similarities, respectively. The average nucleotide identity and DNA–DNA hybridization values between strain RB1R5 and its closest relative IMCC26026 were 78.02 and 21.8 %, respectively. The major cellular fatty acids were anteiso-C and summed feature 3 (comprising Cω7/Cω6). The sole menaquinone was MK-6. The major phospholipid was phosphatidylethanolamine. On the basis of phenotypic, phylogenetic and chemotaxonomic characterizations, strain RB1R5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RB1R5 (=CGMCC 1.23024=NBRC 113060).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003868
2019-11-08
2019-11-21
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II Flavobacterium gen. nov. In: Bergey’s Manual of Determinative Bacteriology Baltimore Williams & Wilkins; 1923
    [Google Scholar]
  2. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis STROHL and Tait 1978). Int J Syst Bacteriol 1996;46: 128– 148 [CrossRef]
    [Google Scholar]
  3. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013;63: 886– 892 [CrossRef]
    [Google Scholar]
  4. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013;63: 1633– 1638 [CrossRef]
    [Google Scholar]
  5. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013;63: 3280– 3286 [CrossRef]
    [Google Scholar]
  6. Bernardet JF, Bowman JP. The genus Flavobacterium In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria7, 3rd ed. New York, NY: Springer; 2006; pp 481– 531
    [Google Scholar]
  7. Bernardet JF, Bowman JP. Genus I. Flavobacterium In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology4, 2nd ed. New York: Springer; 2010; pp 112– 154
    [Google Scholar]
  8. Liu Y, Jin J-H, Zhou Y-G, Liu H-C, Liu Z-P. Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol 2010;60: 417– 421 [CrossRef]
    [Google Scholar]
  9. Zhang G, Xian W, Chu Q, Yang J, Liu W et al. Flavobacterium terriphilum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66: 4276– 4281 [CrossRef]
    [Google Scholar]
  10. Park M, Song J, Nam GG, Kim S, Joung Y et al. Flavobacterium lacicola sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2018;68: 1565– 1570 [CrossRef]
    [Google Scholar]
  11. Ekwe AP, Kim SB. Flavobacterium commune sp. nov., isolated from freshwater and emended description of Flavobacterium seoulense. Int J Syst Evol Microbiol 2018;68: 93– 98 [CrossRef]
    [Google Scholar]
  12. Feng Q, Han L, Nogi Y, Hong Q, Lv J. Flavobacterium lutivivi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2016;66: 1394– 1400 [CrossRef]
    [Google Scholar]
  13. Yi H, Oh HM, Lee JH, Kim SJ, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2005;55: 637– 641 [CrossRef]
    [Google Scholar]
  14. Liu Q, Zhou YG, Xin YH. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing. Syst Appl Microbiol 2015;38: 578– 585 [CrossRef]
    [Google Scholar]
  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  18. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef]
    [Google Scholar]
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28: 2731– 2739 [CrossRef]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  25. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Bacteriol 1987;37: 463– 464
    [Google Scholar]
  26. Liu Q, Liu H-C, Zhang JL, Zhou YG, Xin YH. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. Int J Syst Evol Microbiol 2015;65: 2955– 2959 [CrossRef]
    [Google Scholar]
  27. Liu Q, Xin YH, Chen XL, Liu HC, Zhou YG et al. Cryobacterium aureum sp. nov., a psychrophilic bacterium isolated from glacier ice collected from the ice tongue surface. Int J Syst Evol Microbiol 2018;68: 1173– 1176 [CrossRef]
    [Google Scholar]
  28. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52: 1049– 1070
    [Google Scholar]
  29. Smibert RM, Krieg NR. Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  31. Komagata K, Suzuki K. 4 lipid and cell-wall analysis in bacterial Systematics. Methods Microbiol 1988; 161– 207
    [Google Scholar]
  32. Collins MD. Isoprenoidquinone analysis in classification and identification In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp 267– 287
    [Google Scholar]
  33. Cousin S, Päuker O, Stackebrandt E. Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 2007;57: 243– 249 [CrossRef]
    [Google Scholar]
  34. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004;54: 85– 92 [CrossRef]
    [Google Scholar]
  35. Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 2003;53: 519– 526 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003868
Loading
/content/journal/ijsem/10.1099/ijsem.0.003868
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error