1887

Abstract

Two strains (S-1072 and 1626) of Gram-stain-negative, oxidase- and catalase-positive, aerobic, rod-shaped, motile bacteria with a single polar flagellum, were isolated from the leaves of Dandelion () on the Qinghai–Tibet Plateau of China. The cells grew optimally at 28 °C, pH 7.0 and with 0.5 % (w/v) NaCl on brain–heart infusion agar. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains S-1072 and 1626 belong to the genus , sharing the highest similarity with CCTCC AB 2014326 (97.0 %), CGMCC 1.8985 (96.9 %) and KCTC 22048 (96.6 %). The phylogenomic tree indicated that strains S-1072 and 1626 were most closely related to CGMCC 1.12611. The biochemical characteristics revealed that strains S-1072 and 1626 could neither produce trypsin nor produce acid from -glucose, -acetylglucosamine and maltose, distinguishing them from four closest relatives. The DNA G+C contents of strains S-1072 and 1626 were 69.2 and 69.3 mol% respectively. The digital DNA–DNA hybridization values of our isolates with their four closely related species were below the 70 % threshold. The predominant menaquinone was Q-8 (98.7 %) and the major polar lipids included diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>10 %) were iso-C, iso-C and summed feature 9 (10-methyl C and/or iso-C 9). Based on the data obtained, strains S-1072 and 1626 should be classified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S-1072 (=CGMCC 1.13927=JCM 33487).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003863
2019-12-13
2020-01-24
Loading full text...

Full text loading...

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A, Finkmann W. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50: 273– 282 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68: 1825– 1829 [CrossRef]
    [Google Scholar]
  3. Cheng J, Zhang M-Y, Wang W-X, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 2016;66: 946– 950 [CrossRef]
    [Google Scholar]
  4. Ngo HTT, Yin CS. Luteimonas terrae sp. nov., isolated from rhizosphere soil of Radix ophiopogonis. Int J Syst Evol Microbiol 2016;66: 1920– 1925 [CrossRef]
    [Google Scholar]
  5. Zhao GY, Shao F, Zhang M, Zhang XJ, Wang JY et al. Luteimonas rhizosphaerae sp. nov., isolated from the rhizosphere of Triticum aestivum L. Int J Syst Evol Microbiol 2018;68: 1197– 1203 [CrossRef]
    [Google Scholar]
  6. Mu Y, Zeng X-C, Liu L, Shi W, Luo X et al. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 2016;66: 2291– 2296 [CrossRef]
    [Google Scholar]
  7. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F et al. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010;60: 1581– 1584 [CrossRef]
    [Google Scholar]
  8. Baik KS, Park SC, Kim MS, Kim EM, Park C et al. Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008;58: 2904– 2908 [CrossRef]
    [Google Scholar]
  9. Sun Z-B, Zhang H, Yuan X-F, Wang Y-X, Feng D-M et al. Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 2012;62: 2916– 2920 [CrossRef]
    [Google Scholar]
  10. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S et al. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 2016;66: 5444– 5451
    [Google Scholar]
  11. Young C-C, Kämpfer P, Chen W-M, Yen W-S, Arun AB et al. Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 2007;57: 741– 744 [CrossRef]
    [Google Scholar]
  12. Fan X, Yu T, Li Z, Zhang X-H. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64: 668– 674 [CrossRef]
    [Google Scholar]
  13. Lin S-Y, Hameed A, Shahina M, Liu YC, Hsu YH et al. Description of Luteimonas pelagia sp. nov., isolated from marine sediment, and emended descriptions of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes and Lysobacter panaciterrae. Int J Syst Evol Microbiol 2016;66: 645– 651 [CrossRef]
    [Google Scholar]
  14. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS et al. Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2008;46: 525– 529 [CrossRef]
    [Google Scholar]
  15. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 2013;63: 1261– 1266 [CrossRef]
    [Google Scholar]
  16. Park Y-J, Park MS, Lee SH, Park W, Lee K et al. Luteimonas lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011;61: 2729– 2733 [CrossRef]
    [Google Scholar]
  17. CY K, Sun WJ, YB L, GM L, Zhang QZ et al. Microbial enhanced oil recovery in Baolige Oilfield using an indigenous facultative anaerobic strain Luteimonas huabeiensis sp. nov. J Petrol Sci Eng 2018;167: 160– 167
    [Google Scholar]
  18. Han Z, Shang-guan F, Yang J. Characterization of a novel cold-active xylanase from Luteimonas species. World J Microbiol Biotechnol 2018;34: 123 [CrossRef]
    [Google Scholar]
  19. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 2016;7: 1408 [CrossRef]
    [Google Scholar]
  20. Escudero NL, De Arellano ML, Fernández S, Albarracín G, Mucciarelli S. Taraxacum officinale as a food source. Plant Foods Hum Nutr 2003;58: 1– 10 [CrossRef]
    [Google Scholar]
  21. Wirngo FE, Lambert MN, Jeppesen PB. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes. Rev Diabet Stud 2016;13: 113– 131 [CrossRef]
    [Google Scholar]
  22. Sharifi-Rad M, Roberts TH, Matthews KR, Bezerra CF, Morais-Braga MFB et al. Ethnobotany of the genus Taraxacum -Phytochemicals and antimicrobial activity. Phytotherapy Research 2018;32: 2131– 2145 [CrossRef]
    [Google Scholar]
  23. Chen W, Fan H, Liang R, Zhang R, Zhang J et al. Taraxacum officinale extract ameliorates dextran sodium sulphate‐induced colitis by regulating fatty acid degradation and microbial dysbiosis. J Cell Mol Med 2019; [CrossRef]
    [Google Scholar]
  24. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74: 2461– 2470 [CrossRef]
    [Google Scholar]
  25. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Paraliobacillus zengyii sp. nov., a slightly halophilic and extremely halotolerant bacterium isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2019;69: 1426– 1432 [CrossRef]
    [Google Scholar]
  26. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617
    [Google Scholar]
  27. Saitou N, Nei M. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef]
    [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22: 4673– 4680 [CrossRef]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  33. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  34. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67: 2053– 2057 [CrossRef]
    [Google Scholar]
  35. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015;43: 261– 269 [CrossRef]
    [Google Scholar]
  36. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013;51: 2582– 2591 [CrossRef]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009;26: 1641– 1650 [CrossRef]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  39. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45: 493– 496 [CrossRef]
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids101, MIDI Technical Note. 1990; pp 1– 7
    [Google Scholar]
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  42. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef]
    [Google Scholar]
  43. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5: 2359– 2367 [CrossRef]
    [Google Scholar]
  44. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2: 117– 134 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003863
Loading
/content/journal/ijsem/10.1099/ijsem.0.003863
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error