1887

Abstract

A Gram-stain-positive, rod-shaped, strictly aerobic, endospore-forming and motile bacterium with peritrichous flagella was isolated from a gut sample of the larva of at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea. Growth was observed at 15–50 °C (optimum, 28–37 °C), pH 6.0–8.0 (pH 7.0) and only without NaCl. 16S rRNA gene sequence comparisons indicated that strain FW100M-2 had the highest similarity to type strains of S3-4A (96.8 %) and DSM 1355 (96.3 %), and had sequence similarity values less than 96.0 % to all other taxa. The phylogenetic tree showed that strain FW100M-2 fell into the genus , and formed a cluster with S3-4A independent from other species. Antesio-C, iso-C and anteiso-C were detected as the major fatty acids. The only isoprenoid quinone was MK-7. Polar lipids of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, two unidentified phospholipids and an unidentified lipid were present. The -diaminopimelic acid was present in the cell-wall peptidoglycan. The genomic DNA G+C content was 51.5 mol%. Hence, strain FW100M-2 represents a novel species of the genus , for which the name sp. nov. is proposed, with FW100M-2 (=KACC 19327=NBRC 113071) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003860
2019-11-08
2019-11-21
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64: 253– 260
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47: 289– 298 [CrossRef]
    [Google Scholar]
  3. Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J et al. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity – description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 2010;33: 328– 336 [CrossRef]
    [Google Scholar]
  4. Uetanabaro AP et al. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 2003;53: 1051– 1057 [CrossRef]
    [Google Scholar]
  5. Zhuang J, Xin D, Zhang Y-Q, Guo J, Zhang J. Paenibacillus albidus sp. nov., isolated from grassland soil. Int J Syst Evol Microbiol 2017;67: 4685– 4691 [CrossRef]
    [Google Scholar]
  6. Weid VD I, Frois Duarte G, Van Elsas JD, Seldin L. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 2002;52: 2147– 2153
    [Google Scholar]
  7. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004;54: 1521– 1526 [CrossRef]
    [Google Scholar]
  8. Saha P et al. Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 2005;55: 2577– 2581 [CrossRef]
    [Google Scholar]
  9. Liu Y, Liu L, Qiu F, Schumann P, Shi Y et al. Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2010;60: 1266– 1270 [CrossRef]
    [Google Scholar]
  10. Sadaf K, Tushar L, Nirosha P, Podile AR, Sasikala C et al. Paenibacillus arachidis sp. nov. isolated from groundnut seeds. Int J Syst Evol Microbiol 2016;66: 2923– 2928
    [Google Scholar]
  11. Park M-H, Traiwan J, Jung MY, Nam YS, Jeong JH et al. Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. Int J Syst Evol Microbiol 2011;61: 281– 285 [CrossRef]
    [Google Scholar]
  12. Clermont D, Gribaldo S, Bizet C, Chamot-Rooke J, Malosse C, Gomard M, Hamon S, Bonne I, Fernandez JC et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015;65: 4621– 4626 [CrossRef]
    [Google Scholar]
  13. KS K, Kim YS, Lee MY, Shin SY, Jung DS et al. Paenibacillus konsidensis sp. nov., isolated from a patient. Int J Syst Evol Microbiol 2008;58: 2164– 2168
    [Google Scholar]
  14. Kim KK, Lee KC, Yu H, Ryoo S, Park Y et al. Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol 2010;60: 2371– 2376 [CrossRef]
    [Google Scholar]
  15. Vaz-Moreira I, Figueira V, Lopes AR, Pukall R, Spröer C et al. Paenibacillus residui sp. nov., isolated from urban waste compost. Int J Syst Evol Microbiol 2010;60: 2415– 2419 [CrossRef]
    [Google Scholar]
  16. Horn MA et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 2005;55: 1255– 1265 [CrossRef]
    [Google Scholar]
  17. Park D-S, Jeong W-J, Lee KH, Oh H-W, Kim B-C et al. Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis. Int J Syst Evol Microbiol 2009;59: 1342– 1347 [CrossRef]
    [Google Scholar]
  18. Wang XM, Ma S, Yang SY, Peng R, Zheng Y et al. Paenibacillus nasutitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 2016;66: 901– 905 [CrossRef]
    [Google Scholar]
  19. Yun J-H, Lee J-Y, Kim PS, Jung M-J, Bae J-W. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera. Int J Syst Evol Microbiol 2017;67: 1918– 1924 [CrossRef]
    [Google Scholar]
  20. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997;143: 2983– 2989 [CrossRef]
    [Google Scholar]
  21. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  22. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28: 1823– 1829 [CrossRef]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  28. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64: 346– 351 [CrossRef]
    [Google Scholar]
  29. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12: 635– 645 [CrossRef]
    [Google Scholar]
  30. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10: 563 569 [CrossRef]
    [Google Scholar]
  31. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44: 6614– 6624 [CrossRef]
    [Google Scholar]
  32. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2: 117– 134 [CrossRef]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  35. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59: 2114– 2121 [CrossRef]
    [Google Scholar]
  36. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European J. Appl. Microbiol. Biotechnol. 1978;5: 123– 127 [CrossRef]
    [Google Scholar]
  37. Smibert R, Krieg NR. Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  38. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  39. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48: 459– 470 [CrossRef]
    [Google Scholar]
  40. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28: 226– 231
    [Google Scholar]
  41. Shin S-K, Kim E, Yi H. Paenibacillus crassostreae sp. nov., isolated from the Pacific oyster Crassostrea gigas. Int J Syst Evol Microbiol 2018;68: 58– 63 [CrossRef]
    [Google Scholar]
  42. Khianngam S, Akaracharanya A, Tanasupawat S, Lee KC, Lee J-S. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int J Syst Evol Microbiol 2009;59: 564– 568 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003860
Loading
/content/journal/ijsem/10.1099/ijsem.0.003860
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error