1887

Abstract

A Gram-stain-negative and facultatively anaerobic bacterial strain, designated GUO, was isolated from surface water collected from the South China Sea. Cells were non-flagellate, yellow, non-spore-forming and rod-shaped. The 16S rRNA gene sequence comparisons with species in the genus showed that strain GUO shares the highest similarity of 97.5 % with and . Average nucleotide identity and digital DNA–DNA hybridization values between strain GUO and its related type strains were 77.1–78.4% and 20.8–26.2 % respectively. Growth of strain GUO occurred at 15–50°C (optimum, 20–25°C), pH 5–7.5 (pH 6) and in media containing 0–7 % NaCl (optimum, 0–1 %). Cells contained methanol-soluble yellow-coloured pigments but flexirubin-type pigments were absent. The major fatty acids (>5 %) were iso-C 3-OH, iso-C, anteiso-C, C, summed feature 3, iso-C G and iso-C 3-OH. The dominant polar lipids comprised phosphatidylethanolamine and some unidentified polar lipids. The main respiratory quinone was menaquinone-6. The DNA G+C content of strain GUO was 40.1 %. Based on the presented data, we consider strain GUO to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GUO (=KCTC 62629=MCCC 1K03559)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003855
2019-11-15
2019-12-09
Loading full text...

Full text loading...

References

  1. Ivanova EP, Nedashkovskaya OI, Chun J, Lysenko AM, Frolova GM et al. Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 2001;51: 1987– 1995 [CrossRef]
    [Google Scholar]
  2. Bernardet JF, Bowman JP. The genus Flavobacterium In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes. Proteobacteria, Delta, Epsilon, Subclass7 New York: Springer New York; 2006; pp 481– 531
    [Google Scholar]
  3. Nedashkovskaya OI, Vancanneyt M, Cleenwerck I, Snauwaert C, Kim SB et al. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter. Int J Syst Evol Microbiol 2006;56: 155– 160 [CrossRef]
    [Google Scholar]
  4. Kim JM, Lee HJ, Kim SY, Song JJ, Park W et al. Analysis of the fine-scale population structure of "Candidatus accumulibacter phosphatis" in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Appl Environ Microbiol 2010;76: 3825– 3835 [CrossRef]
    [Google Scholar]
  5. Jung JY, Kim JM, Jin HM, Kim SY, Park W et al. Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011;61: 1534– 1538 [CrossRef]
    [Google Scholar]
  6. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol and Evol 1987;4: 406– 425
    [Google Scholar]
  8. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol and Evol 1993;10: 512– 526
    [Google Scholar]
  9. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  10. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30: 2114– 2120 [CrossRef]
    [Google Scholar]
  11. Andrews S. 2013; FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  12. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18: 821– 829 [CrossRef]
    [Google Scholar]
  13. Li AZ, Lin LZ, Zhang MX, Lv Y, Zhu HH. Arenibacter catalasegens sp. nov., isolated from marine surface sediment, and emended description of the genus Arenibacter. Int J Syst Evol Microbiol 2018;68: 758– 763 [CrossRef]
    [Google Scholar]
  14. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  15. Huss VAR, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4: 184– 192 [CrossRef]
    [Google Scholar]
  16. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. J Appl Microbiol 1988;268: 433– 434
    [Google Scholar]
  17. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955;1: 138– 146
    [Google Scholar]
  18. Sun F, Wang B, Du Y, Liu X, Lai Q et al. Arenibacter nanhaiticus sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010;60: 78– 83 [CrossRef]
    [Google Scholar]
  19. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  20. Christakis GB, Perlorentzou SP, Chalkiopoulou I, Athanasiou A, Legakis NJ. Chryseobacterium indologenes non-catheter-related bacteremia in a patient with a solid tumor. J Clin Microbiol 2005;43: 2021– 2023 [CrossRef]
    [Google Scholar]
  21. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980;8: 87– 91 [CrossRef]
    [Google Scholar]
  22. Kates M. Techniques of Lipidology106, 2nd Revised ed. Amsterdam: Elsevier; 1986; pp 241– 246
    [Google Scholar]
  23. Collins MD. Isoprenoid Quinone Analyses in Bacterial Classification and Identification London: Academic Press; 1985
    [Google Scholar]
  24. Nedashkovskaya OI, Kim SB, Lysenko AM, Lee KH, Bae KS et al. Arenibacter echinorum sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2007;57: 2655– 2659 [CrossRef]
    [Google Scholar]
  25. Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int J Syst Evol Microbiol 2003;53: 1287– 1290 [CrossRef]
    [Google Scholar]
  26. Jeong SH, Jin HM, Kim JM, Jeon CO. Arenibacter hampyeongensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013;63: 679– 684 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003855
Loading
/content/journal/ijsem/10.1099/ijsem.0.003855
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error