1887

Abstract

A polyphasic approach was used to investigate the taxonomic status of two bacterial strains, WS 5072 and WS 5092, isolated from skimmed milk concentrate and raw cow’s milk. The 16S rRNA and gene sequences affiliated the strains to the same, hitherto unknown, species. Further examinations of the draft genomes based on multilocus sequence analysis and average nucleotide identity confirmed the presence of a novel species. It was most closely related to DSM 3456 with 86.3 % ANIm. The DNA G+C content of strain WS 5072 was 56.3 mol%. Cells were aerobic, Gram-negative, catalase and oxidase positive, rod-shaped and motile. Growth occurred at 4–34 °C, pH 5.5–8.0 and with salt concentrations of up to 7 %. The major cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The dominating quinone was Q-9 with 94 %, with noticeable amounts of Q-8 (5 %) and traces of Q-7 and Q-10. Fatty acid profiles showed a composition common for with the major component C. Based on these results, the novel species sp. nov. is proposed, with the type strain WS 5072 (=DSM 108989=LMG 31234) and the additional strain WS 5092 (=DSM 108990=LMG 31235).

Keyword(s): raw milk and Pseudomonas
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003851
2019-11-15
2019-12-09
Loading full text...

Full text loading...

References

  1. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6:214 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef]
    [Google Scholar]
  3. Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Ramos JL et al. Nonmedical: Pseudomonas, 3 ed. New York: Springer; 2006; pp646–703
    [Google Scholar]
  4. Hantsis-Zacharov E, Halpern M. Culturable psychrotrophic bacterial communities in RAW milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 2007;73:7162–7168 [CrossRef]
    [Google Scholar]
  5. Marchand S, Vandriesche G, Coorevits A, Coudijzer K, De Jonghe V et al. Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 2009;133:68–77 [CrossRef]
    [Google Scholar]
  6. Machado SG, Baglinière F, Marchand S, Van Coillie E, Vanetti MCD et al. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front Microbiol 2017;8:302 [CrossRef]
    [Google Scholar]
  7. von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 2015;211:57–65 [CrossRef]
    [Google Scholar]
  8. Marchand S, Heylen K, Messens W, Coudijzer K, De Vos P et al. Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ Microbiol 2009;11:467–482 [CrossRef]
    [Google Scholar]
  9. de Oliveira GB, Favarin L, Luchese RH, McIntosh D. Psychrotrophic bacteria in milk: how much do we really know?. Braz J Microbiol 2015;46:313–321 [CrossRef]
    [Google Scholar]
  10. Lafarge V, Ogier J-C, Girard V, Maladen V, Leveau J-Y et al. Raw cow milk bacterial population shifts attributable to refrigeration. Appl Environ Microbiol 2004;70:5644–5650 [CrossRef]
    [Google Scholar]
  11. Vithanage NR, Dissanayake M, Bolge G, Palombo EA, Yeager TR et al. Biodiversity of culturable psychrotrophic microbiota in RAW milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int Dairy J 2016;57:80–90 [CrossRef]
    [Google Scholar]
  12. Sørhaug T, Stepaniak L. Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends in Food Science & Technology 1997;8:35–41 [CrossRef]
    [Google Scholar]
  13. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009;23:140–147 [CrossRef]
    [Google Scholar]
  14. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. Genbank. Nucleic Acids Res 2013;41:D36–D42 [CrossRef]
    [Google Scholar]
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef]
    [Google Scholar]
  16. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef]
    [Google Scholar]
  17. Huptas C, Scherer S, Wenning M. Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 2016;9:269 [CrossRef]
    [Google Scholar]
  18. Patel RK, Jain M. Ngs Qc toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012;7:e30619 [CrossRef]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef]
    [Google Scholar]
  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef]
    [Google Scholar]
  21. Chain PSG, Grafham DV, Fulton RS, FitzGerald MG, Hostetler J et al. Genome Project standards in a new era of sequencing. Science 2009;326:236–237 [CrossRef]
    [Google Scholar]
  22. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef]
    [Google Scholar]
  23. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018;46:D851–D860 [CrossRef]
    [Google Scholar]
  24. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  25. Mulet M, Lalucat J, García-Valdés E. Dna sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  27. Eichholz W. Erdbeerbacillus (bacterium fragi). Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1902;9:425–428
    [Google Scholar]
  28. Gruber T. Ein weiterer Beitrag zur Aromabildung, speziell zur Bildung des Erdbeergeruches in der Gruppe "Pseudomonas", Pseudomonas fragariae II. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg 1905;14:122–123
    [Google Scholar]
  29. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M et al. Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2016;66:1163–1173 [CrossRef]
    [Google Scholar]
  30. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 2011;61:2401–2405 [CrossRef]
    [Google Scholar]
  31. Yumoto I, Kusano T, Shingyo T, Nodasaka Y, Matsuyama H et al. Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles 2001;5:343–349 [CrossRef]
    [Google Scholar]
  32. Haynes WC.Genus I. Pseudomonas Migula 1894 In Breed RS, Murray EGD, Smith NR. (editors) Bergey's Manual of Determinative Bacteriology, 7th edition. Baltimore: The Williams & Wilkins Co; 1957; pp89–152
    [Google Scholar]
  33. Skerman VBD, Sneath PHA, McGOWAN V. Approved Lists of bacterial names. Int J Syst Evol Microbiol 1980;30:225–420 [CrossRef]
    [Google Scholar]
  34. Molin G, Ternström A, Ursing J. Notes: Pseudomonas lundensis, a new bacterial species isolated from meat. Int J Syst Bacteriol 1986;36:339–342 [CrossRef]
    [Google Scholar]
  35. See-Too WS, Salazar S, Ee R, Convey P, Chan K-G et al. Pseudomonas versuta sp. nov., isolated from Antarctic soil. Syst Appl Microbiol 2017;40:191–198 [CrossRef]
    [Google Scholar]
  36. Schroeter J.Über einige durch Bacterien gebildete Pigmente In Cohn F. editor Beiträge zur Biologie der Pflanzen Breslau: Kern's Verlag; 1872; pp109–126
    [Google Scholar]
  37. Migula W. System der Bakterien Jena: Gustav Fischer; 1900
    [Google Scholar]
  38. Ryu E. A simple method of differentiation between gram-positive and gram-negative organisms without staining. Kitasato Arch Exp Med 1940;17:58–36
    [Google Scholar]
  39. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954;44:301–307
    [Google Scholar]
  40. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef]
    [Google Scholar]
  41. Baur C, Krewinkel M, Kranz B, von Neubeck M, Wenning M et al. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. Int Dairy J 2015;49:23–29 [CrossRef]
    [Google Scholar]
  42. Gallie J, Libby E, Bertels F, Remigi P, Jendresen CB et al. Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens. PLoS Biol 2015;13:e1002109 [CrossRef]
    [Google Scholar]
  43. Han B, Pain A, Johnstone K. Spontaneous duplication of a 661 bp element within a two-component sensor regulator gene causes phenotypic switching in colonies of Pseudomonas tolaasii, cause of brown blotch disease of mushrooms. Mol Microbiol 1997;25:211–218 [CrossRef]
    [Google Scholar]
  44. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982;16:584–586
    [Google Scholar]
  45. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  46. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef]
    [Google Scholar]
  47. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  48. Tindall BJ, Smibert RM, Krieg NR.Phenotypic characterization and the principles of comparative systematics In Reddy C, Beveridge T, Breznak JA, Marzluf G. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp330–393
    [Google Scholar]
  49. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003851
Loading
/content/journal/ijsem/10.1099/ijsem.0.003851
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error