1887

Abstract

Two Gram-positive, aerobic, non-motile and non-spore-forming actinobacteria, strains GY074 and GY239, were isolated from deep-sea sediment of the Southern Atlantic Ocean. The results of phylogenetic analysis of 16S rRNA gene sequences placed both isolates within the genus , and showed a sequence similarity of 98.3 % between the two strains and similarites of 94.3–97.2 % with respect to species with validly published names. Based on whole-genome sequences, the values of DNA–DNA hybridization and the average nucleotide identity between strains GY074 and GY239 were 21.2 and 78.1 %, respectively, less than the proposed cut-off level for species delineation, i.e. 70 and 95 %. For both strains, the major cellular fatty acids were anteiso-C and anteiso-C, and the major menaquinones were MK-7, MK-8 and MK-9. The major polar lipid contents of the two strains were similar with phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. The genomic DNA G+C contents of strains GY074 and GY239 were 61.1 and 64.2 mol%, respectively. On the basis of the phylogenetic analysis and physiological and chemotaxonomic data, the isolates represent two novel species of the genus , for which the names sp. nov. (type strain GY074=KCTC 39639=MCCC 1A11256) and sp. nov. (type strain GY239=KCTC 39640=MCCC 1A10688) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003847
2019-11-12
2019-12-09
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45: 682– 692 [CrossRef]
    [Google Scholar]
  2. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N et al. Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2002;52: 1145– 1150
    [Google Scholar]
  3. Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ et al. Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 2005;55: 463– 466
    [Google Scholar]
  4. Li L, Li Y-Q, Fu Y-S, Zhang H, Alkhalifah DHM et al. Nesterenkonia endophytica sp. nov., isolated from roots of Glycyrrhiza uralensis. Int J Syst Evol Microbiol 2018;68: 2659– 2663 [CrossRef]
    [Google Scholar]
  5. Govender L, Naidoo L, Setati ME. Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol 2013;63: 41– 46 [CrossRef]
    [Google Scholar]
  6. Sultanpuram VR, Mothe T, Chintalapati S, Chintalapati VR. Nesterenkonia cremea sp. nov., a bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2017;67: 1861– 1866 [CrossRef]
    [Google Scholar]
  7. Borsodi AK, Szili-Kovács T, Schumann P, Spröer C, Márialigeti K et al. Nesterenkonia pannonica sp. nov., a novel alkaliphilic and moderately halophilic actinobacterium. Int J Syst Evol Microbiol 2017;67: 4116– 4120 [CrossRef]
    [Google Scholar]
  8. Luo H-Y, Wang Y-R, Miao L-H, Yang P-L, Shi P-J et al. Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 2009;59: 863– 868 [CrossRef]
    [Google Scholar]
  9. Luo H-Y, Miao L-H, Fang C, Yang P-L, Wang Y-R et al. Nesterenkonia flava sp. nov., isolated from paper-mill effluent. Int J Syst Evol Microbiol 2008;58: 1927– 1930 [CrossRef]
    [Google Scholar]
  10. Yoon J-H, Jung S-Y, Kim W, Nam S-W, Oh T-K. Nesterenkonia jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2006;56: 2587– 2592 [CrossRef]
    [Google Scholar]
  11. Liu J-M, Tuo L, Habden X, Guo L, Jiang Z-K et al. Nesterenkonia populi sp. nov., an actinobacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 2015;65: 1474– 1479 [CrossRef]
    [Google Scholar]
  12. Edouard S, Sankar S, Dangui NPM, Lagier J-C, Michelle C et al. Genome sequence and description of Nesterenkonia massiliensis sp. nov. strain NP1T. Stand Genomic Sci 2014;9: 866– 882 [CrossRef]
    [Google Scholar]
  13. Zhang G, Zhang Y, Yin X, Wang S. Nesterenkonia alkaliphila sp. nov., an alkaliphilic, halotolerant actinobacteria isolated from the Western Pacific Ocean. Int J Syst Evol Microbiol 2015;65: 516– 521 [CrossRef]
    [Google Scholar]
  14. Hopkins DW, Macnaughton SJ, O'Donnell AG. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 1991;23: 217– 225 [CrossRef]
    [Google Scholar]
  15. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978;5: 113– 122 [CrossRef]
    [Google Scholar]
  16. Yin X, Yang Y, Wang S, Zhang G. Virgibacillus oceani sp. nov. isolated from ocean sediment. Int J Syst Evol Microbiol 2015;65: 159– 164 [CrossRef]
    [Google Scholar]
  17. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960
    [Google Scholar]
  18. Ruan JS, Huang Y. The Classified Methods of Actinobacteria. Rapid Identification and Systematics of Actinobacteria Beijing: Science Press; 2011; pp p. 72– .77
    [Google Scholar]
  19. WJ L, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57: 1424– 1428
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic acid techniques in bacterial systematics Chichester: Wiley; 1991; pp 115– 175
    [Google Scholar]
  21. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425
    [Google Scholar]
  26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10: 512– 526
    [Google Scholar]
  27. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  30. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  32. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27: 104– 117 [CrossRef]
    [Google Scholar]
  33. Kaiser P, Geyer R, Surmann P, Fuhrmann H. LC–MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 2012;88: 28– 34 [CrossRef]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids Technical Note no. 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36: 407– 477
    [Google Scholar]
  36. Schleifer KH. Analysis of the chemical composition and primary structure of murein In Bergan T. editor Methods in Microbiology18 London: Academic Press; 1985; pp 123– 156
    [Google Scholar]
  37. Schumann P. Peptidoglycan structure In Rainey F, Oren A. (editors) Methods in Microbiology London: Academic Press; 2011; pp 101– 129
    [Google Scholar]
  38. Li W-J, Zhang Y-Q, Schumann P, Liu H-Y, Yu L-Y et al. Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol 2008;58: 1359– 1363 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003847
Loading
/content/journal/ijsem/10.1099/ijsem.0.003847
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error