1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, motile by gliding and rod-shaped bacterial strain, designated HSMS-1, was isolated from a marine sand collected from the Yellow Sea, Republic of Korea, and identified by a polyphasic taxonomic approach. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that HSMS-1 fell within the clade comprising the type strains of species of the genus . HSMS-1 exhibited 16S rRNA gene sequence similarity values of 99.0 and 98.7 % to the type strains of and and of 93.3–98.5 % to the type strains of the other species of the genus . The ANI and dDDH values between HSMS-1 and the type strains of , , , , and were 72.6–79.3 % and 17.4–22.2 %, respectively. Mean DNA–DNA relatedness value between HSMS-1 and the type strain of was 18 %. HSMS-1 contained MK-6 as the predominant menaquinone and iso-C, anteiso-C, iso-C 3-OH and iso-C as the major fatty acids. The major polar lipid of HSMS-1 was phosphatidylethanolamine. The DNA G+C content of HSMS-1 from genomic sequence data was 39.2 %. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that HSMS-1 is separated from recognized species of the genus . On the basis of the data presented, strain HSMS-1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HSMS-1(=KACC 19899=NBRC 113648).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003845
2019-11-12
2019-12-09
Loading full text...

Full text loading...

References

  1. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992 In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology4., 2nd ed. New York: Springer; 2011; pp 106– 111
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2005;55: 391– 394 [CrossRef]
    [Google Scholar]
  3. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68: 1825– 1829 [CrossRef]
    [Google Scholar]
  4. Panschin I, Becher M, Verbarg S, Spröer C, Rohde M et al. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of Gramella gaetbulicola Cho et al. 2011. Int J Syst Evol Microbiol 2017;67: 697– 703 [CrossRef]
    [Google Scholar]
  5. Li AZ, Han XB, Lin LZ, Zhang MX, Zhu HH. Gramella antarctica sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 2018;68: 358– 363 [CrossRef]
    [Google Scholar]
  6. Shin SK, Kim E, Yi H. Gramella salexigens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018;68: 2381– 2385 [CrossRef]
    [Google Scholar]
  7. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S et al. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2005;55: 2497– 2500 [CrossRef]
    [Google Scholar]
  8. Cho SH, Chae SH, Cho M, Kim TU, Choi S et al. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int J Syst Evol Microbiol 2011;61: 2654– 2658 [CrossRef]
    [Google Scholar]
  9. Jeong SH, Jin HM, Jeon CO. Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. Int J Syst Evol Microbiol 2013;63: 2872– 2878 [CrossRef]
    [Google Scholar]
  10. Hameed A, Shahina M, Lin SY, Liu YC, Lai WA et al. Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2014;64: 2675– 2681 [CrossRef]
    [Google Scholar]
  11. Park JM, Park S, Won SM, Jung YT, Shin K-S et al. Gramella aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015;65: 1262– 1267 [CrossRef]
    [Google Scholar]
  12. Park S, Kim S, Jung YT, Yoon JH. Gramella aquimixticola sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2015;65: 4244– 4249 [CrossRef]
    [Google Scholar]
  13. Park S, Yoon SY, Jung YT, Won SM, Yoon JH. Gramella sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66: 2704– 2710 [CrossRef]
    [Google Scholar]
  14. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47: 111– 114 [CrossRef]
    [Google Scholar]
  15. Yoon JH, Kim H, Kim IG, Kang KH, Park YH. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003;53: 1169– 1174 [CrossRef]
    [Google Scholar]
  16. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  17. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 2012;7: e42304 [CrossRef]
    [Google Scholar]
  18. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  20. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67: 2053– 2057 [CrossRef]
    [Google Scholar]
  21. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  23. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102: 2567– 2572 [CrossRef]
    [Google Scholar]
  24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39: 224– 229 [CrossRef]
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial Systematics. Methods Microbiol 1987;19: 161– 207
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  28. Embley TM, Wait R. Structural lipids of eubacteria In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp 121– 161
    [Google Scholar]
  29. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64: 2969– 2974 [CrossRef]
    [Google Scholar]
  30. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50: 1861– 1868 [CrossRef]
    [Google Scholar]
  31. Reichenbach H. The order Cytophagales In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn. New York: Springer; 1992; pp 3631– 3675
    [Google Scholar]
  32. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52: 1049– 1070
    [Google Scholar]
  33. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987;19: 1– 67
    [Google Scholar]
  34. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51: 1997– 2006 [CrossRef]
    [Google Scholar]
  35. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  36. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981; pp 1302– 1331
    [Google Scholar]
  37. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49: 25– 68 [CrossRef]
    [Google Scholar]
  38. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968;95: 1921– 1942
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003845
Loading
/content/journal/ijsem/10.1099/ijsem.0.003845
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error