1887

Abstract

A novel strain S29 with high nitrogen fixing ability was isolated from surface-sterilized leaf tissues of oil palm () growing in Science Park II, Singapore. On the basis of 16S rRNA gene analysis and multilocus sequence typing with the and genes, strain S29 was a member of the genus , with ATCC 27989 and LS 8 as its closest relatives. Unique biochemical features that differentiated strain S29 from its closest relatives were the ability to utilize melibiose, -cyclodextrin, glycogen, adonital, -arabitol, -inositol and xylitol. The major fatty acids were C, C, C, C 5c and summed feature 2 containing C 7c and/or C 6c. The polar fatty acid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid and aminolipids. The draft genome of strain S29 comprised 5, 284, 330 bp with a G + C content of 52.6 %. The average nucleotide identity and digital DNA–DNA hybridization values between strain S29 and the phylogenetically related species were lower than 95 % and 70 %, respectively. Thus, the polyphasic evidences generated through the phenotypic, chemotaxonomic and genomic methods confirmed that strain S29 represents a novel species of the genus , for which we propose the name sp. nov. with the type strain of S29 (=DSM 27342=KACC 17598).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003834
2019-12-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/841.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003834&mimeType=html&fmt=ahah

References

  1. Zhang GX, Peng GX, Wang ET, Yan H, Yuan QH et al. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Arch Microbiol 2008; 189:431–439 [View Article]
    [Google Scholar]
  2. Pillonetto M, Arend L, Gomes SMT, Oliveira MAA, Timm LN et al. Molecular investigation of isolates from a multistate polymicrobial outbreak associated with contaminated total parenteral nutrition in Brazil. BMC Infect Dis 2018b; 18:397 [View Article]
    [Google Scholar]
  3. Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 2009; 9:204 [View Article]
    [Google Scholar]
  4. Pillonetto M, Arend LN, Faoro H, D’Espindula HRS, Blom J et al. Emended description of the genus Phytobacter, its type species Phytobacter diazotrophicus (Zhang 2008) and description of Phytobacter ursingii sp. nov. Int J Syst Evol Microbiol 2018a; 68:176–184 [View Article]
    [Google Scholar]
  5. Madhaiyan M, Peng N, Te N, Hsin I C, Lin C et al. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 2013a; 6:140 [View Article]
    [Google Scholar]
  6. Madhaiyan M, Peng N, Ji L. Complete genome sequence of Enterobacter sp. strain R4-368, an endophytic N-Fixing gammaproteobacterium isolated from surface-sterilized roots of Jatropha curcas L. Genome Announc 2013b; 1:e00544–00513 [View Article]
    [Google Scholar]
  7. Madhaiyan M, Jin TY, Roy JJ, Kim S-J, Weon H-Y et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol 2013c; 63:2477–2483 [View Article]
    [Google Scholar]
  8. Madhaiyan M, Chan KL, Ji L. Draft genome sequence of Methylobacterium sp. strain L2-4, a leaf-associated endophytic N-fixing bacterium isolated from Jatropha curcas L. Genome Announc 2014; 2:e01306–01314 [View Article]
    [Google Scholar]
  9. Madhaiyan M, Alex THH, Ngoh ST, Prithiviraj B, Ji L. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas . Biotechnol Biofuels 2015; 8:222 [View Article]
    [Google Scholar]
  10. Madhaiyan M, Hu CJ, Jegan Roy J, Kim S-J, Weon H-Y et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013d; 63:1702–1708 [View Article]
    [Google Scholar]
  11. Madhaiyan M, Hu CJ, Kim S-J, Weon H-Y, Kwon S-W et al. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int J Syst Evol Microbiol 2013e; 63:1241–1248 [View Article]
    [Google Scholar]
  12. Madhaiyan M, Alex THH, Cho H, Kim S-J, Weon H-Y et al. Sphingomonas jatrophae sp. nov. and Sphingomonas carotinifaciens sp. nov., two yellow-pigmented endophytes isolated from stem tissues of Jatropha curcas L. Int J Syst Evol Microbiol 2017; 67:5150–5158 [View Article]
    [Google Scholar]
  13. Döbereiner J, Baldani VL, Reis VM. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M. (editors) Azospirillum VI and Related Microorganisms Springer; 1995 pp 3–14
    [Google Scholar]
  14. Cappuccino J, Welsh C. Microbiology: A Laboratory Manual, 11th ed. Pearson Education Ltd; 2018 p 561
    [Google Scholar]
  15. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Numerical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  16. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston E, Moore DD, Seidman JG. (editors) New York: Wiley: Current Protocols in Molecular Biology; 1997 pp 241–242
  17. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article]
    [Google Scholar]
  18. Yoon S-H, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  24. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter . Syst Appl Microbiol 2013; 36:309–319 [View Article]
    [Google Scholar]
  25. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article]
    [Google Scholar]
  26. Bennett S. Solexa ltd. Pharmacogenomics 2004; 5:433–438 [View Article]
    [Google Scholar]
  27. In Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Prokaryotic genome annotation pipeline. The NCBI Handbook, 2nd ed. Bethesda: National Center for Biotechnology Information; 2013
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  29. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278 [View Article]
    [Google Scholar]
  30. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter F-J et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009; 10:154 [View Article]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  32. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  33. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:3 [View Article]
    [Google Scholar]
  34. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [View Article]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  36. Sasser M. IDentification of Bacteria by Gas Chromatography of Cellular Fatty Acids , MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Baldani VLD, Baldani JI, Olivares FL, Döbereiner J. Identification and ecology of Herbaspirillum seopedicae and the closely related Pseudomonas rubrisubalbicans . Symbiosis 1992; 19:65–73
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003834
Loading
/content/journal/ijsem/10.1099/ijsem.0.003834
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error