1887

Abstract

Strain ICH-3, isolated from a freshwater pond in Taiwan 9ROC), was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set (92 protein clusters) indicated that ICH-3 is affiliated with the species in the genus . ICH-3 was most closely related to JA2 and NCIB 8290 with 97.5 and 97.4 % 16S rRNA gene sequence similarity. The average nucleotide identity and digital DNA–DNA hybridization identity between ICH-3 and the two closely related strains were 77.3 and 20.9–21.0 %, respectively, indicating that ICH-3 represents a novel species of the genus . Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped and formed white colonies. Optimal growth occurred at 30 °C, pH 7.5–8.0 and with 0.5 % NaCl. The major fatty acids (>20 %) of ICH-3 were summed feature 3 (comprising C ω7 and/or C ω6) and C . The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an uncharacterized aminophospholipid and two uncharacterized phospholipids. The major isoprenoid quinone was Q-8. The genomic DNA G+C content of ICH-3 was 70.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain ICH-3 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ICH-3 (=BCRC 81155=LMG 30930=KCTC 62866).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003829
2019-11-15
2019-12-09
Loading full text...

Full text loading...

References

  1. Imhoff JF. Genus Incertae Sedis XV. Rubrivivax Willems, Gillis and de Ley 1991 In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology2, 2nd ed. New York: Springer; 2005; pp 749– 750
    [Google Scholar]
  2. Willems A, Gillis M, de Ley J. Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Int J Syst Bacteriol 1991;41: 65– 73 [CrossRef]
    [Google Scholar]
  3. Ramana CV, Sasikala C, Arunasri K, Anil Kumar P, Srinivas TNR et al. Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 2006;56: 2157– 2164 [CrossRef]
    [Google Scholar]
  4. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp 19– 33
    [Google Scholar]
  5. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Archiv. Mikrobiol. 1970;71: 283– 294 [CrossRef]
    [Google Scholar]
  6. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999;171: 73– 80 [CrossRef]
    [Google Scholar]
  7. Breznak JA, Costilow RN. Physicochemical factors in growth In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp 309– 329
    [Google Scholar]
  8. Trüper HG, Pfennig N. The phototrophic bacteria In Buchanan RE, Gibbons NE. (editors) Bergey’s Manual of Systematic Bacteriology, 8th ed. Baltimore: Williams & Wilkins; 1974; pp 24– 75
    [Google Scholar]
  9. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H et al. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 2005;55: 1089– 1096 [CrossRef]
    [Google Scholar]
  10. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp 330– 393
    [Google Scholar]
  11. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002;35: 213– 219 [CrossRef]
    [Google Scholar]
  12. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50: 1861– 1868 [CrossRef]
    [Google Scholar]
  13. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004;27: 43– 49 [CrossRef]
    [Google Scholar]
  14. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33: 26– 37 [CrossRef]
    [Google Scholar]
  15. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  16. Embley TM, Wait R. Structural lipids of eubacteria In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp 121– 161
    [Google Scholar]
  17. Collins MD. Isoprenoid quinones In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp 265– 309
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173: 697– 703 [CrossRef]
    [Google Scholar]
  19. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997;47: 249– 251 [CrossRef]
    [Google Scholar]
  20. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51: 1729– 1735 [CrossRef]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23: 2947– 2948 [CrossRef]
    [Google Scholar]
  23. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999;41: 95– 98
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  26. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18: 1– 32 [CrossRef]
    [Google Scholar]
  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef]
    [Google Scholar]
  28. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  29. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10: 512– 526 [CrossRef]
    [Google Scholar]
  30. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  31. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016;32: 3047– 3048 [CrossRef]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30: 2068– 2069 [CrossRef]
    [Google Scholar]
  34. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017;34: 2115– 2122 [CrossRef]
    [Google Scholar]
  35. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016;44: D286– D293 [CrossRef]
    [Google Scholar]
  36. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  40. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56: 280– 285 [CrossRef]
    [Google Scholar]
  41. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef]
    [Google Scholar]
  42. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42: D206– D214 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003829
Loading
/content/journal/ijsem/10.1099/ijsem.0.003829
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error