1887

Abstract

A Gram-staining-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated as JBTF-M21, was isolated from a tidal flat sediment on the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences indicated that JBTF-M21 fell within the clade comprising the type strains of species of the genus . JBTF-M21 exhibited 16S rRNA gene sequence similarities of 97.0–98.4 % to the type strains of , , , , , and and 93.7–96.6 % to the type strains of the other species of the genus . The ANI and dDDH values between JBTF-M21 and the type strains of , , and were 70.83–72.93 % and 18.0–18.8 %, respectively. Mean DNA–DNA relatedness values between JBTF-M21 and the type strains of , and were 12–24 %. The DNA G+C content of JBTF-M21 was 57.0 mol%. JBTF-M21 contained Q-10 as the predominant ubiquinone and Cω7 and Cω6 as the major fatty acids. The major polar lipids ofJBTF-M21 were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. Distinguishing phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that JBTF-M21 is separated from species of the genus with validly published names. On the basis of the data presented, strain JBTF-M21 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JBTF-M21 (=KACC 19864=NBRC 113584).

Funding
This study was supported by the:
  • Jung-Hoon Yoon , Rural Development Administration , (Award PJ013743)
  • Jung-Hoon Yoon , National Institute of Biological Resources , (Award project on survey of indigenous species of Korea)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003824
2020-02-25
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/3/1470.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003824&mimeType=html&fmt=ahah

References

  1. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a . Int J Syst Bacteriol 1982; 32:211–217 [CrossRef]
    [Google Scholar]
  2. Lee K-B, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [CrossRef]
    [Google Scholar]
  3. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef]
    [Google Scholar]
  4. Fang C, Wu Y-H, Sun C, Wang H, Cheng H et al. Erythrobacter zhengii sp. nov., a bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2019; 69:241–248 [CrossRef]
    [Google Scholar]
  5. Zhuang L, Lin B, Xu L, Li G, Wu C-J et al. Erythrobacter spongiae sp. nov., isolated from marine sponge. Int J Syst Evol Microbiol 2019; 69:1111–1116 [CrossRef]
    [Google Scholar]
  6. Park S, Won SM, Yoon JH. Erythrobacter marisflavi sp. nov., isolated isolated from water of an estuary environment. Int J Syst Evol Microbiol 2019; 69:2696–2702
    [Google Scholar]
  7. Lee SD, Kim Y-J, Kim IS. Erythrobacter suaedae sp. nov., isolated from a rhizosphere mudflat of a halophyte (Suaeda japonica). Int J Syst Evol Microbiol 2019; 69:3287–3292 [CrossRef]
    [Google Scholar]
  8. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 1994; 44:427–434 [CrossRef]
    [Google Scholar]
  9. Denner EBM, Vybiral D, Koblízek M, Kämpfer P, Busse H-J et al. Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea . Int J Syst Evol Microbiol 2002; 52:1655–1661 [CrossRef]
    [Google Scholar]
  10. Yoon J-H, Kim H, Kim IG, Kang KH, Park YH. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [CrossRef]
    [Google Scholar]
  11. Yoon JH, Kang KH, TK O, Park YH. Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:1981–1985 [CrossRef]
    [Google Scholar]
  12. Yoon JH, Oh TK, Park YH. Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:71–75 [CrossRef]
    [Google Scholar]
  13. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 2005; 28:123–130 [CrossRef]
    [Google Scholar]
  14. Xu M, Xin Y, Yu Y, Zhang J, Zhou Y et al. Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60:2215–2220 [CrossRef]
    [Google Scholar]
  15. Jung YT, Park S, Lee JS, Yoon JH. Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:4184–4190 [CrossRef]
    [Google Scholar]
  16. Lei X, Zhang H, Chen Y, Li Y, Chen Z et al. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65:2472–2478 [CrossRef]
    [Google Scholar]
  17. Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2015; 65:3714–3719 [CrossRef]
    [Google Scholar]
  18. Park S, Jung YT, Choi SJ, Yoon JH. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:2964–2969 [CrossRef]
    [Google Scholar]
  19. Xing T, Liu Y, Wang N, Xu B, Liu K et al. Erythrobacter arachoides sp. nov., isolated from ice core. Int J Syst Evol Microbiol 2017; 67:4235–4239 [CrossRef]
    [Google Scholar]
  20. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [CrossRef]
    [Google Scholar]
  21. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 2012; 7:e42304 [CrossRef]
    [Google Scholar]
  22. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  24. Lee I, Chalita M, Ha SM, Na SI, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [CrossRef]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [CrossRef]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  30. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [CrossRef]
    [Google Scholar]
  31. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987; 19:1–67
    [Google Scholar]
  32. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [CrossRef]
    [Google Scholar]
  33. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria , 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  34. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981 pp 1302–1331
    [Google Scholar]
  35. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [CrossRef]
    [Google Scholar]
  36. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942
    [Google Scholar]
  37. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  38. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003824
Loading
/content/journal/ijsem/10.1099/ijsem.0.003824
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error