1887

Abstract

Two strains, designated 2251 and 3058, that were aerobic, Gram-stain-negative, non-motile, coccoid or short rod-shaped bacilli, have recently been isolated from Tibetan antelopes on the Qinghai-Tibet Plateau. The results of phylogenetic analyses of 16S rRNA gene sequences indicated that strains 2251 and 3058 represent a new species within the genus and are most similar to ‘’ CUG00006 (98.9 and 99.3 %), I-41R45 (98.3 and 98.7 %) and THG-T2.31 (97.6 and 97.8 %). Results of genomic sequence-based phylogenomic analysis agreed with those from 16S rRNA gene sequence analysis. Optimal growth was achieved at pH 7.0–7.5 and 28 °C with marine medium. Cells contained C 7 as the major cellular fatty acid and ubiquinone-10 as the predominant menaquinone. The polar lipids comprised phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phospholipid, glycolipid and an unidentified lipid. The cell-wall peptidoglycan amino acids were meso-2,6-diaminopimelic acid, alanine and glutamic acid; the major cell-wall sugar was galactose. The G+C content of strain 2251 was 66.5 mol%. Both strains (2251 and 3058) had DNA–DNA relatedness values less than 50 % with all available genomes of the genus in the database. Differential genotypic inferences, together with phenotypic and biochemical characteristics, demonstrated that strains 2251 and 3058 should be classified as a novel species of the genus , for which the name sp. nov. is suggested. The type strain is 2251 (=CGMCC 1.16490=DSM 106269).

Funding
This study was supported by the:
  • Sanming Project of Medicine in Shenzhen (Award SZSM201811071)
    • Principle Award Recipient: Jianguo Xu
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: Jianguo Xu
  • National Major Science and Technology Projects of China (Award 2018ZX10305409-003)
    • Principle Award Recipient: Zhihong Ren
  • National Science and Technology Major Project of China (Award 2018ZX10712001-007)
    • Principle Award Recipient: Jing Yang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003807
2019-11-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/744.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003807&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  2. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans . Int J Syst Bacteriol 1993; 43:363–367 [View Article]
    [Google Scholar]
  3. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995; 141:1469–1477 [View Article]
    [Google Scholar]
  4. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008; 58:257–261 [View Article]
    [Google Scholar]
  5. Liu S, Hu S, Wang Y, Xu J, Lu S et al. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana . Int J Syst Evol Microbiol 2015; 65:2130–2134 [View Article]
    [Google Scholar]
  6. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  7. Chen W-M, Li Y-S, Young C-C, Sheu S-Y. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int J Syst Evol Microbiol 2017; 67:2689–2695 [View Article]
    [Google Scholar]
  8. Li J, Yang J, Lu S, Jin D, Lai X-H et al. Mycetocola zhujimingii sp. nov., isolated from faeces of Tibetan antelopes (Pantholops hodgsonii). Int J Syst Evol Microbiol 2019; 69:1117–1122 [View Article]
    [Google Scholar]
  9. Li J, Lu S, Jin D, Yang J, Lai X-H et al. Salinibacterium hongtaonis sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet plateau. Int J Syst Evol Microbiol 2019; 69:1093–1098 [View Article]
    [Google Scholar]
  10. Tian Z, Lu S, Jin D, Yang J, Pu J et al. Streptococcus chenjunshii sp. nov. isolated from feces of Tibetan antelopes. Int J Syst Evol Microbiol 2019; 69:1237–1243 [View Article]
    [Google Scholar]
  11. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcus pantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016; 66:3281–3286 [View Article]
    [Google Scholar]
  12. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Paraliobacillus zengyii sp. nov., a slightly halophilic and extremely halotolerant bacterium isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2019; 69:1426–1432 [View Article]
    [Google Scholar]
  13. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article]
    [Google Scholar]
  14. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  16. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  17. Baj J, Piechucka E, Bartosik D, Włodarczyk M. Plasmid occurrence and diversity in the genus Paracoccus. Acta Microbiol Pol 2000; 49:265–270
    [Google Scholar]
  18. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article]
    [Google Scholar]
  19. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article]
    [Google Scholar]
  20. Zhang G, Xian W, Yang J, Liu W, Jiang H et al. Paracoccus gahaiensis sp. nov. isolated from sediment of Gahai Lake, Qinghai-Tibetan Plateau, China. Arch Microbiol 2016; 198:227–232 [View Article]
    [Google Scholar]
  21. Kämpfer P, Irgang R, Poblete-Morales M, Fernández-Negrete G, Glaeser SP et al. Paracoccus nototheniae sp. nov., isolated from a black rock cod fish (Notothenia coriiceps) from the Chilean Antarctic. Int J Syst Evol Microbiol 2019; 69:2794–2800 [View Article]
    [Google Scholar]
  22. Lin P, Yan Z-F, Won K-H, Yang J-E, Li C-T et al. Paracoccus hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017; 67:2452–2458 [View Article]
    [Google Scholar]
  23. Harker M, Hirschberg J, Oren A. Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int J Syst Bacteriol 1998; 48:543–548 [View Article]
    [Google Scholar]
  24. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 2004; 54:1699–1702 [View Article]
    [Google Scholar]
  25. Tsubokura A, Yoneda H, Mizuta H. Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 1999; 49:277–282 [View Article]
    [Google Scholar]
  26. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477
    [Google Scholar]
  27. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  30. Wayne LG. International committee on systematic bacteriology: announcement of the report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434
    [Google Scholar]
  31. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  32. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003807
Loading
/content/journal/ijsem/10.1099/ijsem.0.003807
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error