1887

Abstract

A strictly aerobic, bacteriochlorophyll -containing betaproteobacterium designated strain W35, was isolated from a biofilm sampled at Tama River in Japan. The non-motile and rod-shaped cells formed pink-beige pigmented colonies on agar plates containing organic compounds, and showed an absorption maximum at 871 nm in the near-infrared region, typical for the presence of bacteriochlorophyll . The new bacterial strain is Gram-negative, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain W35 was closely related to species in the genus . The closest phylogenetic relatives of strain W35 were B8 (97.9 % sequence similarity), B4 (97.2 %) and ABP-4 (97.0 %). The major cellular fatty acids were C ω7 (50.4 %), C (22.7 %), summed feature 8 (C ω7/C ω6; 9.7 %), C ω6 (5.5 %), C (5.3 %) and C 3OH (2.7 %). The respiratory quinone was ubiquinone-8. Predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of the genomic DNA was 70.4 mol% (genome data) and 71.4 mol% (HPLC). The genome size of strain W35 is 6.1 Mbp and average nucleotide identity analysis indicated genome similarities of strain W35 and related type strains to be 78–79 %. The results of polyphasic comparisons showed that strain W35 was clearly distinguishable from other members of the genus . Therefore, we propose a new species in the genus , namely, sp. nov. The type strain is W35 (=DSM 106757=NBRC 111963). The description of the genus is also emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003798
2020-02-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/596.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003798&mimeType=html&fmt=ahah

References

  1. Harashima K, Shiba T, Totsuka T, Shimizu U, Taga N. Occurence of bcteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric Biol Chem 1978; 42:1627–1628
    [Google Scholar]
  2. Sato K. Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett 1978; 85:207–210 [View Article]
    [Google Scholar]
  3. Kolber ZS et al. Contribution of aerobic Photoheterotrophic bacteria to the carbon cycle in the ocean. Science 2001; 292:2492–2495 [View Article]
    [Google Scholar]
  4. Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC et al. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the global ocean sampling expedition metagenomes. Environ Microbiol 2007; 9:1464–1475 [View Article]
    [Google Scholar]
  5. Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015; 39:854–870 [View Article]
    [Google Scholar]
  6. Yurkov V, Stackebrandt E, Vermegl A, Gorlenk V, Beattyl JT et al. Reorganization of the genus Eythromicrobium: Description of “ Eythromicrobium sibiricum ” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “ Erythromicrobium ursincola ” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Evol Microbiol 1997; 47:1172–1178
    [Google Scholar]
  7. Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S et al. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the beta-subclass of the Proteobacteria . Int J Syst Bacteriol 1999; 49:449–457 [View Article]
    [Google Scholar]
  8. Yurkov V, Hughes E. Aerobic anoxygenic phototrophs: Four decades of mystery. In Hallenbeck PC. ed Modern Topics in the Phototrophic Prokaryotes Switzerland: Springer Nature; 2017 pp 193–214
    [Google Scholar]
  9. Hanada S. Anoxygenic photosynthesis -a photochemical reaction that does not contribute to oxygen reproduction. Microbes Environ 2016; 31:1–3 [View Article]
    [Google Scholar]
  10. Yurkov V, Csotnyi JT. New light on aerobic anoxygneic phototrophs. In Daldal F, Thurnauer MC, Beatty JT. eds The Purple Phototrophic Bateria Dordrecht: Springer Science; 2009 pp pp. 31–.55
    [Google Scholar]
  11. Thiel V, Tank M, Bryant DA. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu Rev Plant Biol 2018; 69:21–49 [View Article]
    [Google Scholar]
  12. Rohwerder T, Müller RH, Weichler MT, Schuster J, Hübschmann T et al. Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate intermediate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates. Microbiology 2013; 159:2180–2190 [View Article]
    [Google Scholar]
  13. Kasalicky V, Zeng Y, Piwosz K, Simek K, Kratochvilova H et al. Aerobic anoxygenic photosythesis is commonly present within the genus Limnohabitans . Appl Environ Microbiol 2018; 84:1–13
    [Google Scholar]
  14. Hirose S, Matsuura K, Haruta S. Phylogenetically diverse aerobic anoxygenic phototrophic bacteria isolated from epilithic biofilms in Tama river, Japan. Microbes Environ 2016; 31:299–306 [View Article]
    [Google Scholar]
  15. Kalmbach S, Manz W, Wecke J, Szewzyk U. Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 1999; 49 Pt 2:769–777 [View Article]
    [Google Scholar]
  16. Lin M-C, Jiang S-R, Chou J-H, Arun AB, Young C-C et al. Aquabacterium fontiphilum sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2009; 59:681–685 [View Article]
    [Google Scholar]
  17. Chen W-M, Cho N-T, Yang S-H, Arun AB, Young C-C et al. Aquabacterium limnoticum sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2012; 62:698–704 [View Article]
    [Google Scholar]
  18. Pham VHT, Jeong S-W, Kim J. Aquabacterium olei sp. nov., an oil-degrading bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2015; 65:3597–3602 [View Article]
    [Google Scholar]
  19. Khan IU, Habib N, Asem MD, Salam N, Xiao M et al. Aquabacterium tepidiphilum sp. nov., a moderately thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2019; 69:337–342 [View Article]
    [Google Scholar]
  20. Hanada S, Hiraishi A, Shimada K, Matsuura K. Isolation of Chloroflexus aurantiacus and related thermophilic phototrophic bacteria from Japanese hot springs using an improved isolation procedure. J Gen Appl Microbiol 1995; 41:119–130 [View Article]
    [Google Scholar]
  21. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Woods WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  24. Nagashima KVP, Hiraishi A, Shimada K, Matsuura K. Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 1997; 45:131–136 [View Article]
    [Google Scholar]
  25. Smalley NE, Taipale S, De Marco P, Doronina NV, Kyrpides N et al. Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. Int J Syst Evol Microbiol 2015; 65:2227–2233 [View Article]
    [Google Scholar]
  26. Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 2006; 56:2517–2522 [View Article]
    [Google Scholar]
  27. Takaichi S, Shimada K. Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 1992; 213:374–385
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  30. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology Knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  32. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Mag 2014; 9:111–118 [View Article]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  35. Mori K, Yamaguchi K, Hanada S. Sulfurovum denitrificans sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing epsilonproteobacterium isolated from a hydrothermal field. Int J Syst Evol Microbiol 2018; 68:2183–2187 [View Article]
    [Google Scholar]
  36. Hanada S, Takaichi S, Matsuura K, Nakamura K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 2002; 52:187–193 [View Article]
    [Google Scholar]
  37. Hamada M, Iino T, Iwami T, Harayama S, Tamura T et al. Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (masters et al. 1995) as Austwickia chelonae gen. nov., comb. nov. J Gen Appl Microbiol 2010; 56:427–436 [View Article]
    [Google Scholar]
  38. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003798
Loading
/content/journal/ijsem/10.1099/ijsem.0.003798
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error