1887

Abstract

Strain LMG 30378 was isolated from a hydrogen-oxidizing bacteria enrichment reactor inoculated with forest soil. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus . Multilocus sequence analysis combined with sequence analysis of a 765 bp gene fragment both showed LMG 3411 and LMG 1231 to be the closest-related neighbours to strain LMG 30378. Genome sequence analysis revealed a draft genome of 6.81 Mb with a G+C content of 67.2 mol%. DNA–DNA hybridization with LMG 1231 and LMG 3411 showed 42.7 and 42.5% similarity, respectively, confirming that strain LMG 30378 represented a novel species. Phenotypic and metabolic characterization revealed acid phosphatase activity and the absence of phosphoamidase activity as distinctive features. The draft genome composes all necessary metabolic components to fix carbon dioxide and to oxidize molecular hydrogen, suggesting that strain LMG 30378 is a key organism in the enrichment reactor. Together, these data demonstrate that strain LMG 30378 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LMG 30378 (=CCUG 71558).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003786
2019-10-15
2019-11-13
Loading full text...

Full text loading...

References

  1. Matassa S, Boon N, Verstraete W. Resource recovery from used water: the manufacturing abilities of hydrogen-oxidizing bacteria. Water Res 2015;68: 467– 478 [CrossRef]
    [Google Scholar]
  2. Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 2008;105: 11512– 11519 [CrossRef]
    [Google Scholar]
  3. Ehsani E, Dumolin C, Arends JBA, Kerckhof F-M, Hu X et al. Enriched hydrogen-oxidizing microbiomes show a high diversity of co-existing hydrogen-oxidizing bacteria. Appl Microbiol Biotechnol 2019;103: 8241– 8253 [CrossRef]
    [Google Scholar]
  4. Yabuuchi E, Yano I. Achromobacter gen. nov. and Achromobacter xylosoxidans (ex Yabuuchi and Ohyama 1971) nom. rev. Int J Syst Bacteriol 1981;31: 477– 478 [CrossRef]
    [Google Scholar]
  5. Vandamme P, Moore ERB, Cnockaert M, Peeters C, Svensson-Stadler L et al. Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov., respectively. Syst Appl Microbiol 2013;36: 474– 482 [CrossRef]
    [Google Scholar]
  6. Vandamme P, Moore ERB, Cnockaert M, De Brandt E, Svensson-Stadler L et al. Achromobacter animicus sp. nov., Achromobacter mucicolens sp. nov., Achromobacter pulmonis sp. nov. and Achromobacter spiritinus sp. nov., from human clinical samples. Syst Appl Microbiol 2013;36: 1– 10 [CrossRef]
    [Google Scholar]
  7. Vandamme PA, Peeters C, Inganäs E, Cnockaert M, Houf K et al. Taxonomic dissection of Achromobacter denitrificans Coenye et al. 2003 and proposal of Achromobacter agilis sp. nov., nom. rev., Achromobacter pestifer sp. nov., nom. rev., Achromobacter kerstersii sp. nov. and Achromobacter deleyi sp. nov. Int J Syst Evol Microbiol 2016;66: 3708– 3717 [CrossRef]
    [Google Scholar]
  8. Coenye T et al. Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Ruger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol 2003;53: 1825– 1831 [CrossRef]
    [Google Scholar]
  9. Coenye T, Vancanneyt M, Falsen E, Swings J, Vandamme P. Achromobacter insolitus sp. nov. and Achromobacter spanius sp. nov., from human clinical samples. Int J Syst Evol Microbiol 2003;53: 1819– 1824 [CrossRef]
    [Google Scholar]
  10. Gomila M, Tvrzová L, Teshim A, Sedlácek I, González-Escalona N et al. Achromobacter marplatensis sp. nov., isolated from a pentachlorophenol-contaminated soil. Int J Syst Evol Microbiol 2011;61: 2231– 2237 [CrossRef]
    [Google Scholar]
  11. Yabuuchi E, Kawamura Y, Kosako Y, Ezaki T. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol Immunol 1998;42: 429– 438 [CrossRef]
    [Google Scholar]
  12. Garrity GM, Bell JA, Lilburn T. Bergey’s Manual of Systematic Bacteriology, Volume Two: the Proteobacteria, Part C: the Alpha-, Beta-, Delta-, and Epsilonproteobacteria Boston, MA: Springer US; 2005
    [Google Scholar]
  13. Edwards BD, Greysson-Wong J, Somayaji R, Waddell B, Whelan FJ et al. Prevalence and outcomes of Achromobacter species infections in adults with cystic fibrosis: a North American cohort study. J Clin Microbiol 2017;55: 2074– 2085 [CrossRef]
    [Google Scholar]
  14. Cools P, Ho E, Vranckx K, Schelstraete P, Wurth B et al. Epidemic Achromobacter xylosoxidans strain among belgian cystic fibrosis patients and review of literature. BMC Microbiol 2016;16: 122 [CrossRef]
    [Google Scholar]
  15. Igra-Siegman Y, Chmel H, Cobbs C. Clinical and laboratory characteristics of Achromobacter xylosoxidans infection. J Clin Microbiol 1980;11: 141– 145
    [Google Scholar]
  16. Busse HJ, Auling G. Achromobacter Bergey’s Manual of Systematics of Archaea and Bacteria 2015; pp 1– 14
    [Google Scholar]
  17. Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 2001;25: 455– 501 [CrossRef]
    [Google Scholar]
  18. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta 1853;2015: 1350– 1369
    [Google Scholar]
  19. Vanhellemont M, Verheyen K, Baeten L. Relating changes in understorey diversity to environmental drivers in an ancient forest in northern Belgium. Plecevo 2014;147: 22– 32 [CrossRef]
    [Google Scholar]
  20. Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JR et al. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 1999;49: 405– 413 [CrossRef]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  22. Spilker T, Vandamme P, Lipuma JJ. Identification and distribution of Achromobacter species in cystic fibrosis. J Cyst Fibros 2013;12: 298– 301 [CrossRef]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  24. Spilker T, Vandamme P, LiPuma JJ. A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species. J Clin Microbiol 2012;50: 3010– 3015 [CrossRef]
    [Google Scholar]
  25. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010;11: 595 [CrossRef]
    [Google Scholar]
  26. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 3rd ed. Baltimore (Md): Williams and Wilkins; 2000
    [Google Scholar]
  27. Vandamme P, Vancanneyt M, Pot B, Mels L, Hoste B et al. Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol 1992;42: 344– 356 [CrossRef]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  29. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014;9: e112963 [CrossRef]
    [Google Scholar]
  30. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29: 1072– 1075 [CrossRef]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30: 2068– 2069 [CrossRef]
    [Google Scholar]
  32. Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009;25: 2271– 2278 [CrossRef]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  35. Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 2014;345: 1052– 1054 [CrossRef]
    [Google Scholar]
  36. Tremblay PL, Lovley DR. Role of the NiFe hydrogenase hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol 2012;194: 2248– 2253 [CrossRef]
    [Google Scholar]
  37. Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 1994;176: 4385– 4393 [CrossRef]
    [Google Scholar]
  38. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003786
Loading
/content/journal/ijsem/10.1099/ijsem.0.003786
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error