1887

Abstract

A novel actinobacterial strain, designated NEAU-LL90, was isolated from cow dung collected from Shangzhi, Heilongjiang Province, north-east PR China and characterized by using a polyphasic approach. Morphological and chemotaxonomic characteristics were consistent with those members of the genus . The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinone detected was MK-8(H4, ω-cycl). Major fatty acids (>10 %) were identified as C, Cω9, C and 10-methyl C. Mycolic acids were present. The results of 16S rRNA gene sequence analysis showed that strain NEAU-LL90 belongs to the genus with high sequence similarity to JCM11894 (98.1 %), similarities to other type strains of species of the genus were found to be lower than 98.0 %. Furthermore, a combination of DNA–DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-LL90 could be distinguished from its closest relative. Therefore, it is proposed that strain NEAU-LL90 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NEAU-LL90 (=CGMCC 4.7500=JCM 32663).

Funding
This study was supported by the:
  • the National Natural Youth Science Foundation of China (Award 31701858)
    • Principle Award Recipient: Junwei Zhao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003784
2020-02-03
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/493.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003784&mimeType=html&fmt=ahah

References

  1. Goodfellow M, Jones AL, Order V. Corynebacteriales ord. nov. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. (editors) Bergey’s Manual of Systematic Bacteriology 5, 2nd ed. New York: Springer; 2012 pp 235–243
    [Google Scholar]
  2. Trevisan V. I Generi E Le Specie Delle Bacteriaceae Milan: Zanaboni & Gabuzzi; 1889
    [Google Scholar]
  3. Goodfellow M, Maldonado LA. Genus I. Nocardia Trevisan 1889AL . In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. (editors) Bergey’s Manual of Systematic Bacteriology 5, 2nd ed. New York: Springer; 2012 pp 376–419
    [Google Scholar]
  4. Thawai C, Rungjindamai N, Klanbut K, Tanasupawat S. Nocardia xestospongiae sp. nov., isolated from a marine sponge in the Andaman sea. Int J Syst Evol Microbiol 2017; 67:1451–1456 [View Article]
    [Google Scholar]
  5. Li QQ, Han MX, Fang BZ, Jiao JY, Liu L et al. Nocardia cavernae sp. nov., a novel actinobacterium isolated from a karst cave sample. Int J Syst Evol Microbiol 2017; 67:2998–3003 [View Article]
    [Google Scholar]
  6. Huang JR, Ming H, Duan YY, Li S, Zhang LY et al. Nocardia heshunensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2017; 67:3467–3473 [View Article]
    [Google Scholar]
  7. Ding P, Bai JL, Wang TT, Sun Y, Cao CL et al. Nocardia rhizosphaerihabitans sp. nov., a novel actinomycete isolated from a coastal soil. Int J Syst Evol Microbiol 2018; 68:192–197 [View Article]
    [Google Scholar]
  8. Yang RQ, Zhang BL, Sun HL, Zhang GS, Li SW et al. Nocardia mangyaensis sp. nov., a novel actinomycete isolated from crude-oil-contaminated soil. Int J Syst Evol Microbiol 2019; 69:397–403 [View Article]
    [Google Scholar]
  9. Fang BZ, Han MX, Zhang LY, Jiao JY, Zhang XT et al. Nocardia aurea sp. nov., a novel actinobacterium isolated from a karstic subterranean environment. Int J Syst Evol Microbiol 2019; 69:159–164 [View Article]
    [Google Scholar]
  10. Piao C, Zheng W, Li Y, Liu C, Jin L et al. Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 2017; 199:963–970 [View Article]
    [Google Scholar]
  11. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  12. Guan X, Liu C, Zhao J, Fang B, Zhang Y et al. Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie van Leeuwenhoek 2015; 107:1119–1126 [View Article]
    [Google Scholar]
  13. Waksman SA. The Actinomycetes A summary of current knowledge, New York: Ronald; 1967
    [Google Scholar]
  14. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145
    [Google Scholar]
  15. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  16. Kelly KL. Inter-society color council-national Bureau of standards color-name charts illustrated with centroid colors published in US; 1964
  17. Fu Y, Yan R, Liu D, Jiang S, Cui L et al. Trinickia diaoshuihuensis sp. nov., a plant growth promoting bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 69:291–296 [View Article]
    [Google Scholar]
  18. Chapin KC, Murray PR. Stains. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. (editors) Manual of Clinical Microbiology Washington, DC: American Society for Microbiology; 1999 p 1678
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  20. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  21. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales . Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  22. CLSI Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. Approved Standard M24-A Wayne, PA: Clinical and Laboratory Standards Institute; 2003
    [Google Scholar]
  23. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article]
    [Google Scholar]
  24. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (special publication vol 6) Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  25. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-Layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188:221–233 [View Article]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–284
    [Google Scholar]
  28. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  29. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora . Antonie van Leeuwenhoek 2014; 105:307–315 [View Article]
    [Google Scholar]
  30. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article]
    [Google Scholar]
  31. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [View Article]
    [Google Scholar]
  32. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  37. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  38. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  39. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article]
    [Google Scholar]
  40. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article]
    [Google Scholar]
  41. Yoon SH, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  43. Matsumoto T, Negishi T, Hamada M, Komaki H, Gonoi T et al. Nocardia shinanonensis sp. nov., isolated from a patient with endophthalmitis. Int J Syst Evol Microbiol 2016; 66:3324–3328 [View Article]
    [Google Scholar]
  44. Tanasupawat S, Phongsopitanun W, Suwanborirux K, Ohkuma M, Kudo T. Nocardia rayongensis sp. nov., isolated from Thai peat swamp forest soil. Int J Syst Evol Microbiol 2016; 66:1950–1955 [View Article]
    [Google Scholar]
  45. Sazak A, Sahin N, Camas M. Nocardia goodfellowii sp. nov. and Nocardia thraciensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62:1228–1234 [View Article]
    [Google Scholar]
  46. Vaddavalli R, Peddi S, Kothagauni SY, Linga VR. Nocardia bhagyanesis sp. nov., a novel actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis), India. Antonie van Leeuwenhoek 2014; 105:443–450 [View Article]
    [Google Scholar]
  47. Lasker BA, Bell M, Klenk HP, Spröer C, Schumann P et al. Nocardia vulneris sp. nov., isolated from wounds of human patients in North America. Antonie van Leeuwenhoek 2014; 106:543–553 [View Article]
    [Google Scholar]
  48. Bai JL, Wang Y, Qin S, Ding P, Xing K et al. Nocardia jiangsuensis sp. nov., an actinomycete isolated from coastal soil. Int J Syst Evol Microbiol 2016; 66:4633–4638 [View Article]
    [Google Scholar]
  49. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 2006; 33:152–155
    [Google Scholar]
  50. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  51. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the AD hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  52. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  53. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  54. Li S, Ming H, Duan YY, Huang JR, Zhao ZL et al. Nocardia tengchongensis sp. nov., isolated from a soil sample. Antonie van Leeuwenhoek 2017; 110:1149–1155 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003784
Loading
/content/journal/ijsem/10.1099/ijsem.0.003784
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error