gen. nov., sp. nov., a haloalkaliphilic satellite isolated from decaying biomass of a laboratory culture of cyanobacterium sp. and proposal of fam. nov., fam. nov. and fam. nov. Free

Abstract

A novel haloalkaliphilic bacterium, designated G-116, was isolated from the decaying biomass of a laboratory culture of cyanobacterium species. Cells of strain G-116 were Gram-stain-negative, motile spirilla. Strain G-116 showed high halotolerance to 20 % (w/v) NaCl (optimum growth at 3.5–6.0 %, w/v) and obligately alkaliphilic growth within the pH range 7.3–10.4 (optimum growth at pH 8.7–8.9). The major fatty acids identified were C, summed feature 8 (C 7/C 6), summed feature 3 (C 7/C 6) and C cyclo 8. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, three unidentified amino lipids and five unidentified lipids. The predominant respiratory quinone was ubiquinone-8 (Q-8). The G+C content of the genomic DNA was 60.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the closest genus with a validly published name is a monotypic and strain G-116 clustered with GCWy1 with a 16S rRNA gene sequence similarity of 94.3 %. Based on the data obtained from phenotypic and chemotaxonomic studies and the phylogenetic analysis, the isolate is proposed to be a representative of a novel genus and a novel species, gen. nov., sp. nov. Together with they form a separate clade, for which a novel family, fam. nov., is proposed. In addition, fam. nov. and fam. nov. are proposed to encompass the genera and , and the genus , respectively. All three novel families are within the order of the class . The type strain of the type species, gen. nov., sp. nov. is G-116 (=VKM B-3134=KCTC 62956).

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award 2018R1A5A1025077)
    • Principle Award Recipient: Jang-Cheon Cho
  • Российский Фонд Фундаментальных Исследований (РФФИ) (Award 18-04-00236)
    • Principle Award Recipient: Vadim Kevbrin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003781
2020-02-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/511.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003781&mimeType=html&fmt=ahah

References

  1. Otsuki A, Hanya T. Production of dissolved organic matter from dead green algal cells. I. aerobic microbial decomposition. Limnol Oceanogr 1972; 17:248–257 [View Article]
    [Google Scholar]
  2. YuV B, Kevbrin VV. Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community. Microbiology 2016; 85:481–487
    [Google Scholar]
  3. Fallon RD, Brock TD. Decomposition of blue-green algal (cyanobacterial) blooms in lake mendota, Wisconsin. Appl Environ Microbiol 1979; 37:820–830
    [Google Scholar]
  4. Xing P, Guo L, Tian W, Wu QL. Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. ISME J 2011; 5:792–800 [View Article]
    [Google Scholar]
  5. Graue J, Engelen B, Cypionka H. Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes. ISME J 2012; 6:660–669 [View Article]
    [Google Scholar]
  6. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. In Rainey F, Oren A. (editors) Methods in Microbiology. Taxonomy of Prokaryotes 38 Academic Press; 2011 pp 15–60
    [Google Scholar]
  7. Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK et al. The study of nucleotide sequences of nifH genes from some methanotrophic bacteria. Microbiology 2002; 71:425–432 [View Article]
    [Google Scholar]
  8. Owen RJ, Hill LR, Lapage SP. Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 1969; 7:503–516 [View Article]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  10. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  11. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587589 [View Article]
    [Google Scholar]
  12. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  13. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  15. Shahinpei A, Amoozegar MA, Fazeli SAS, Schumann P, Ventosa A et al. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family 'Saccharospirillaceae'. Int J Syst Evol Microbiol 2014; 64:3610–3615 [View Article]
    [Google Scholar]
  16. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  18. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; 56:2.4.1–2.4.2 [View Article]
    [Google Scholar]
  19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S et al. Prokaryotic Genome Annotation Pipeline. the Ncbi Handbook, 2nd ed. Bethesda, MD: NCBI; 2013
    [Google Scholar]
  22. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:9961004 [View Article]
    [Google Scholar]
  23. Pantiukh K, Grouzdev D. POCP-Matrix calculation for a number of genomes. Fig share 2017 10.6084/m9.figshare.5602957.v1
    [Google Scholar]
  24. Grouzdev DS, Rysina MS, Bryantseva IA, Gorlenko VM, Gaisin VA. Draft genome sequences of 'Candidatus Chloroploca asiatica' and 'Candidatus Viridilinea mediisalina', candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications. Stand Genomic Sci 2018; 13:24 [View Article]
    [Google Scholar]
  25. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  28. Garrity GM, Bell JA, Lilburn T. Order VIII. Oceanospirillales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology 2B, 2nd edn. New York: Springer; 2005 pp 270–323
    [Google Scholar]
  29. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P et al. Saccharospirillum Impatiens gen. nov., sp. nov., a novel gamma-proteobacterium isolated from hypersaline Ekho lake (East Antarctica). Int J Syst Evol Microbiol 2003; 53:653–660 [View Article]
    [Google Scholar]
  30. Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E et al. Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. Int J Syst Evol Microbiol 2004; 54:669–673 [View Article]
    [Google Scholar]
  31. Chen YG, Cui XL, Li QY, Wang YX, Tang SK et al. Saccharospirillum salsuginis sp. nov., a gammaproteobacterium from a subterranean brine. Int J Syst Evol Microbiol 2009; 59:1382–1386 [View Article]
    [Google Scholar]
  32. Choi A, Oh HM, Cho JC. Saccharospirillum aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Saccharospirillum . Int J Syst Evol Microbiol 2011; 61:487–492 [View Article]
    [Google Scholar]
  33. Fidalgo C, Rocha J, Proença DN, Morais PV, Alves A et al. Saccharospirillum correiae sp. nov., an endophytic bacterium isolated from the halophyte Halimione portulacoides . Int J Syst Evol Microbiol 2017; 67:2026–2030 [View Article]
    [Google Scholar]
  34. Zhang W, Yuan Y, Su D, Ding L, Yan X et al. Saccharospirillum mangrovi sp. nov., a bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2018; 68:2813–2818 [View Article]
    [Google Scholar]
  35. Pinhassi J, Pujalte MJ, Macián MC, Lekunberri I, González JM et al. Reinekea blandensis sp. nov., a marine, genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 2007; 57:2370–2375 [View Article]
    [Google Scholar]
  36. Choi A, Cho JC. Reinekea aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2010; 60:2813–2817 [View Article]
    [Google Scholar]
  37. Kang H, Kim H, Joung Y, Joh K, nov R. Reinekea marina sp. nov., isolated from seawater, and emended description of the genus Reinekea . Int J Syst Evol Microbiol 2016; 66:360–364 [View Article]
    [Google Scholar]
  38. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article]
    [Google Scholar]
  39. Chung EJ, Park JA, Jeon CO, Chung YR. Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 2015; 65:1038–1043 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003781
Loading
/content/journal/ijsem/10.1099/ijsem.0.003781
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed