1887

Abstract

A novel mesophilic facultative anaerobic bacterium, strain SN118, was isolated from a terrestrial mud volcano in Taman Peninsula, Russia. The cells were Gram-negative, motile, short, straight or curved rods with a single polar flagellum. Growth was observed at 5–40 °C (optimum, 30 °C) and pH 5.5–9.5 (optimum, pH 8.0). Growth of strain SN118 was observed in NaCl concentrations ranging from 0.5 to 8.0 % (w/v) with an optimum at 2.0–3.0 % (w/v). The isolate grew chemolithoautotrophically with sulfide, elemental sulfur or thiosulfate as electron donor, oxygen, nitrate or nitrite as an electron acceptor and CO/HCO as a carbon source. Molecular hydrogen or organic substances did not support growth. Nitrate was reduced to N. The dominant fatty acids were Cω7, C and C ω7. The total size of the genome of the novel isolate was 2 209 279 bp and the genomic DNA G+C content was 38.8 mol%. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus and was most closely related to DSM 1251 (96.74 %). Based on its physiological properties and results from phylogenetic analyses, including average nucleotide identity and DNA–DNA hybridization values, the isolate is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SN118 (=DSM 109248=VKM B-3378).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003779
2019-10-22
2019-11-19
Loading full text...

Full text loading...

References

  1. Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 2003;53: 1801– 1805 [CrossRef]
    [Google Scholar]
  2. Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 2006;56: 1725– 1733 [CrossRef]
    [Google Scholar]
  3. Labrenz M, Grote J, Mammitzsch K, Boschker HTS, Laue M et al. Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 2013;63: 4141– 4148 [CrossRef]
    [Google Scholar]
  4. Cai L, Shao M-F, Zhang T. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment. Stand Genomic Sci 2014;9: 1302– 1310 [CrossRef]
    [Google Scholar]
  5. Timmer-ten Hoor T. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 1975;3-4: 344– 350
    [Google Scholar]
  6. Gevertz D, Telang AJ, Voordouw G, Jenneman GE. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 2000;66: 2491– 2501 [CrossRef]
    [Google Scholar]
  7. Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol 2015;6: 989 [CrossRef]
    [Google Scholar]
  8. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA et al. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2012;62: 2565– 2571 [CrossRef]
    [Google Scholar]
  9. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238: 2882– 2886
    [Google Scholar]
  10. Slobodkina GB, Baslerov RV, Novikov AA, Viryasov MB, Bonch-Osmolovskaya EA et al. Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2016;66: 701– 706 [CrossRef]
    [Google Scholar]
  11. Frolov EN, Kublanov IV, Toshchakov SV, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017;67: 1482– 1485 [CrossRef]
    [Google Scholar]
  12. Slobodkina GB, Kolganova TV, Kostrikina NA, Bonch-Osmolovskaya EA, Slobodkin AI. Caloribacterium cisternae gen. nov., sp. nov., an anaerobic thermophilic bacterium from an underground gas storage reservoir. Int J Syst Evol Microbiol 2012;62: 1543– 1547 [CrossRef]
    [Google Scholar]
  13. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF et al. Genbank. Nucleic Acids Res 1999;27: 12– 17 [CrossRef]
    [Google Scholar]
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215: 403– 410 [CrossRef]
    [Google Scholar]
  15. Yoon S-H, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  17. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10: 512– 526 [CrossRef]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  19. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9: 945– 967
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25: 1043– 1055 [CrossRef]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  23. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Preprints 2016
    [Google Scholar]
  24. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36: 996– 1004 [CrossRef]
    [Google Scholar]
  25. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11: 119 [CrossRef]
    [Google Scholar]
  26. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018;34: 2490– 2492 [CrossRef]
    [Google Scholar]
  27. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25: 1972– 1973 [CrossRef]
    [Google Scholar]
  28. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59: 307– 321 [CrossRef]
    [Google Scholar]
  29. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 2011;60: 685– 699 [CrossRef]
    [Google Scholar]
  30. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25: 1307– 1320 [CrossRef]
    [Google Scholar]
  31. Lefort V, Longueville JE, Gascuel O. Sms: smart model selection in PhyML. Mol Biol Evol 2017;34: 2422– 2424 [CrossRef]
    [Google Scholar]
  32. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5: 8365 [CrossRef]
    [Google Scholar]
  33. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42: D206– D214 [CrossRef]
    [Google Scholar]
  34. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R et al. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 2000;182: 4677– 4687 [CrossRef]
    [Google Scholar]
  35. Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ et al. Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol 2008;74: 1145– 1156 [CrossRef]
    [Google Scholar]
  36. Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim Biophys Acta 2013;1827: 114– 135 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003779
Loading
/content/journal/ijsem/10.1099/ijsem.0.003779
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error