1887

Abstract

A novel actinobacterium, designated strain NEAU-C40, was isolated from the rhizosphere soil of rice ( L.) collected from Northeast Agricultural University in Harbin, Heilongjiang province, north-east PR China, and was characterized using a polyphasic approach. On the basis of results of 16S rRNA gene sequence analysis, strain NEAU-C40 belongs to the genus , and shares highest sequence similarities with CGMCC 4.7237 (97.9%) and DSM 42080 (97.9%). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus . Cell walls contained -diaminopimelic acid and the whole-cell hydrolysates were glucose, rhamnose and ribose. The major menaquinones were identified as MK-9(H) and MK-9(H). The major fatty acids were iso-C, anteiso-C, C and anteiso-C. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and an unidentified lipid. The genomic DNA G+C content of strain NEAU-C40 was 71.8 mol%. Moreover, multilocus sequence analysis based on five other housekeeping genes ( , , , and ) and the low level of DNA–DNA relatedness allowed the isolate to be differentiated from its most closely related strains. On the basis of phenotypic, genotypic and phylogenetic data, strain NEAU-C40 can be characterized to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NEAU-C40 (=DSM 107943=CCTCC AA 2018038).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003777
2019-10-22
2019-11-22
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943;46: 337– 341
    [Google Scholar]
  2. Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012;76: 66– 112 [CrossRef]
    [Google Scholar]
  3. Kämpfer P. Genus streptomyces In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2015; pp 1– 414
    [Google Scholar]
  4. Li C, He H, Wang J, Liu H, Wang H et al. Characterization of a LAL-type regulator NemR in nemadectin biosynthesis and its application for increasing nemadectin production in Streptomyces cyaneogriseus. Sci China Life Sci 2019;62: 394– 405 [CrossRef]
    [Google Scholar]
  5. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 2016;43: 155– 176 [CrossRef]
    [Google Scholar]
  6. Olano C, Méndez C, Salas JA. Antitumor compounds from marine actinomycetes. Mar Drugs 2009;7: 210– 248 [CrossRef]
    [Google Scholar]
  7. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019;69: 688– 695 [CrossRef]
    [Google Scholar]
  8. Cao P, Wang Y, Sun P, Li C, Zhao J et al. Nonomuraea lactucae sp. nov., a novel actinomycete isolated from rhizosphere soil of lettuce (Lactuca sativa). Int J Syst Evol Microbiol 2019;69: 316– 321 [CrossRef]
    [Google Scholar]
  9. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16: 313– 340 [CrossRef]
    [Google Scholar]
  10. Waksman SA. The Actinomycetes A summary of current knowledge, New York: Ronald; 1967
    [Google Scholar]
  11. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57: 141– 145
    [Google Scholar]
  12. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  13. Kelly KL. Inter-society colour council-national Bureau of standards colour-name charts illustrated with centroid colours published in US. 1964
  14. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012;102: 1– 7 [CrossRef]
    [Google Scholar]
  15. Gordon RE, Barnett DA, Handerhan JE, Pang C. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24: 54– 63 [CrossRef]
    [Google Scholar]
  16. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993;43: 805– 812 [CrossRef]
    [Google Scholar]
  17. Smibert RM, Krieg NR. Phenotypic characterisation In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  18. Stuttard C. Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. Microbiology 1982;128: 115– 121 [CrossRef]
    [Google Scholar]
  19. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30: 178– 182 [CrossRef]
    [Google Scholar]
  20. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publication Society of Industrial Microbiology; 1986; pp 227– 291
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  22. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp 267– 284
    [Google Scholar]
  23. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 1989;16: 176– 178
    [Google Scholar]
  24. Qu Z, Ruan JS, Hong K. Application of high performance liquid chromatography and gas chromatography in the identification of Actinomyces. Biotechnology Bulletin [English translation of Biotechnology Bulletin] 2009;s1: 79– 82
    [Google Scholar]
  25. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105: 307– 315 [CrossRef]
    [Google Scholar]
  26. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61: 1165– 1169 [CrossRef]
    [Google Scholar]
  27. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000;50: 2031– 2036 [CrossRef]
    [Google Scholar]
  28. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, USA: Wiley; 1991; pp 115– 175
    [Google Scholar]
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  32. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18: 1– 32 [CrossRef]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  36. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20: 265– 272 [CrossRef]
    [Google Scholar]
  37. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008;24: 713– 714 [CrossRef]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10: 21– 82 [CrossRef]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60– 14 [CrossRef]
    [Google Scholar]
  40. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12: 133– 142 [CrossRef]
    [Google Scholar]
  41. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4: 184– 192 [CrossRef]
    [Google Scholar]
  42. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for Systematics of the whole genus. Syst Appl Microbiol 2012;35: 7– 18 [CrossRef]
    [Google Scholar]
  43. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37: 463– 464
    [Google Scholar]
  44. Otoguro M, Ratnakomala S, Lestari Y, Hastuti RD, Triana E et al. Streptomyces baliensis sp. nov., isolated from Balinese soil. Int J Syst Evol Microbiol 2009;59: 2158– 2161 [CrossRef]
    [Google Scholar]
  45. Li J, Tian XP, Zhu TJ, Yang LL, Li WJ et al. Streptomyces fildesensis sp. nov., a novel streptomycete isolated from Antarctic soil. Antonie van Leeuwenhoek 2011;100: 537– 543 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003777
Loading
/content/journal/ijsem/10.1099/ijsem.0.003777
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error