1887

Abstract

Strain GS-14 was isolated from a mangrove sediment sample collected at Beilun Estuary National Nature Reserve, Guangxi Province, PR China. Cells were Gram-stain-negative, strictly aerobic and rod-shaped with a polar flagellum. Optimal growth occurred in the presence of 3–6 % (w/v) NaCl, at pH 6–8 and at a temperature of 37 °C. The predominant polar lipids were phosphatidylglycerol and phosphatidylethanolamine. Ubiquinone 8 (Q-8) was the sole respiratory quinone. The major fatty acids (>10 % of the total fatty acids) were summed feature 3 (Cω7 and/or Cω6) and C. The DNA G+C content was 47.6 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain GS-14 had the highest sequence similarity to WH169 (96.63 %), AK49 (96.56 %) and JW12 (96.22 %). In addition, the OrthoANIu value and dDDH values calculated from the genomes of strain GS-14 and WH169 were 79.5 and 21.9 %, respectively. Based on the polyphasic taxonomic results, strain GS-14 is considered to represent a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is GS-14 (=KCTC 72401=MCCC 1K03622). Because WH169 clustered with strain GS-14 in the phylogenetic trees and was clearly separated from the two species within the genus , it is reclassified as a member of the genus as comb. nov. (type strain WH169=CGMCC 1.8995=LMG 25283). The type species of the genus is gen. nov., comb. nov.

Funding
This study was supported by the:
  • Xiamen University (Award 201910384171)
    • Principle Award Recipient: Shiyin Wu
  • Natural Science Foundation of Fujian Province (Award 2019J01023)
    • Principle Award Recipient: Hong Xu
  • National Natural Science Foundation of China (Award 41676101 and 41476095)
    • Principle Award Recipient: Hong Xu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003773
2020-02-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/457.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003773&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Mikhaĭlov VV. A new family of Alteromonadaceae fam. nov., including the marine proteobacteria species Alteromonas, Pseudoalteromonas, Idiomarina and Colwellia . Mikrobiologiia 2001; 70:10–17
    [Google Scholar]
  2. Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii . Int J Syst Evol Microbiol 2004; 54:571–576 [View Article]
    [Google Scholar]
  3. Wang Y, Wang H, Liu J, Lai Q, Shao Z et al. Aestuariibacter aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol Lett 2010; 309:48–54 [View Article]
    [Google Scholar]
  4. Li HR, Yu Y, Luo W, Zeng Y-X. Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2010; 60:2535–2539 [View Article]
    [Google Scholar]
  5. Oosthuizen L, Charimba G, Hitzeroth A, Nde AL, Steyn L et al. Chryseobacterium pennipullorum sp. nov., isolated from poultry feather waste. Int J Syst Evol Microbiol 2019; 69:2380–2387 [View Article]
    [Google Scholar]
  6. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  7. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  8. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  10. Rzhetsky A, Nei M. Theoretical Foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  13. Jean WD, Hsu CY, Huang SP, Chen JS, Lin S et al. Reclassification of [Glaciecola] lipolytica and [Aestuariibacter] litoralis in Aliiglaciecola gen. nov., as Aliiglaciecola lipolytica comb. nov. and Aliiglaciecola litoralis comb. nov., respectively. Int J Syst Evol Microbiol 2013; 63:2859–2864 [View Article]
    [Google Scholar]
  14. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article]
    [Google Scholar]
  15. Chen LP, Xu HY, Fu SZ, Fan HX, Liu YH et al. Glaciecola lipolytica sp. nov., isolated from seawater near Tianjin city, China. Int J Syst Evol Microbiol 2009; 59:73–76 [View Article]
    [Google Scholar]
  16. Tanaka N, Romanenko LA, Frolova GM, Mikhailov VV. Aestuariibacter litoralis sp. nov., isolated from a sandy sediment of the sea of Japan. Int J Syst Evol Microbiol 2010; 60:317–320 [View Article]
    [Google Scholar]
  17. Gupta V, Sharma G, Srinivas TNR, Anil Kumar P. Aliiglaciecola coringensis sp. nov., isolated from a water sample collected from mangrove forest in Coringa, Andhra Pradesh, India. Antonie van Leeuwenhoek 2014; 106:1097–1103 [View Article]
    [Google Scholar]
  18. Jin HM, Jeong HI, Jeon CO. Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013. Int J Syst Evol Microbiol 2015; 65:1550–1555 [View Article]
    [Google Scholar]
  19. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  22. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article]
    [Google Scholar]
  23. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  24. Hwang CY, Cho KD, Yih W, Cho BC. Maritalea myrionectae gen. nov., sp. nov., isolated from a culture of the marine ciliate Myrionecta rubra . Int J Syst Evol Microbiol 2009; 59:609–614 [View Article]
    [Google Scholar]
  25. Liao H, Li Y, Zhang M, Lin X, Lai Q et al. Altererythrobacter mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2017; 67:4851–4856 [View Article]
    [Google Scholar]
  26. Wang Y, Liu T, Ming H, Sun P, Cao C et al. Thalassotalea atypica sp. nov., isolated from seawater, and emended description of Thalassotalea eurytherma . Int J Syst Evol Microbiol 2018; 68:271–276 [View Article]
    [Google Scholar]
  27. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  28. Han SB, Su Y, Hu J, Wang R-J, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella . Int J Syst Evol Microbiol 2016; 66:1807–1812 [View Article]
    [Google Scholar]
  29. Jeong SH, Park MS, Jin HM, Lee K, Park W et al. Aestuariibaculum suncheonense gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from a tidal flat and emended descriptions of the genera Gaetbulibacter and Tamlana . Int J Syst Evol Microbiol 2013; 63:332–338 [View Article]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  32. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  33. Sinha RK, Krishnan KP, Singh A, Thomas FA, Jain A et al. Alteromonas pelagimontana sp. nov., a marine exopolysaccharide-producing bacterium isolated from the Southwest Indian Ridge. Int J Syst Evol Microbiol 2017; 67:4032–4038 [View Article]
    [Google Scholar]
  34. Sheu D-S, Sheu S-Y, Lin K-R, Chen Y-LL, Chen W-M. Planctobacterium marinum gen. nov., sp. nov., a new member of the family Alteromonadaceae isolated from seawater. Int J Syst Evol Microbiol 2017; 67:974–980 [View Article]
    [Google Scholar]
  35. Teramoto M, Nishijima M. Agaribacter marinus gen. nov., sp. nov., an agar-degrading bacterium from surface seawater. Int J Syst Evol Microbiol 2014; 64:2416–2423 [View Article]
    [Google Scholar]
  36. Yu W-N, Han J-R, Liu Y, Du Z-J, Mu D-S et al. Agaribacter flavus sp. nov., isolated from red algae. Int J Syst Evol Microbiol 2018; 68:3140–3143
    [Google Scholar]
  37. Romanenko LA et al. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol 2003; 53:647–651 [View Article]
    [Google Scholar]
  38. Van Trappen S, Tan T-L, Yang J, Mergaert J, Swings J. Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and emended description of the genus Glaciecola . Int J Syst Evol Microbiol 2004; 54:1765–1771 [View Article]
    [Google Scholar]
  39. Zhang D-C, Yu Y, Chen B, Wang H-X, Liu H-C et al. Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 2006; 56:2867–2869 [View Article]
    [Google Scholar]
  40. Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T et al. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2006; 56:2883–2886 [View Article]
    [Google Scholar]
  41. Yong J-J, Park S-J, Kim H-J, Rhee S-K. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 2007; 57:951–953 [View Article]
    [Google Scholar]
  42. Zhang Y-J, Zhang X-Y, Mi Z-H, Chen C-X, Gao Z-M et al. Glaciecola arctica sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 2011; 61:2338–2341 [View Article]
    [Google Scholar]
  43. Shivaji S, Reddy GS. Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the southern Ocean. Int J Syst Evol Microbiol 2014; 64:3264–3275 [View Article]
    [Google Scholar]
  44. Bech PK, Schultz-Johansen M, Glaring MA, Barbeyron T, Czjzek M et al. Paraglaciecola hydrolytica sp. nov., a bacterium with hydrolytic activity against multiple seaweed-derived polysaccharides. Int J Syst Evol Microbiol 2017; 67:2242–2247 [View Article]
    [Google Scholar]
  45. Park S, Choi SJ, Choi J, Yoon J-H. Paraglaciecola aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:4754–4759 [View Article]
    [Google Scholar]
  46. Yoon J-H, Yeo S-H, Oh T-K, Park Y-H. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:1197–1201 [View Article]
    [Google Scholar]
  47. Van Trappen S, Tan T-L, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas . Int J Syst Evol Microbiol 2004; 54:1157–1163
    [Google Scholar]
  48. Ivanova EP et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005; 55:1065–1068 [View Article]
    [Google Scholar]
  49. Chiu H-H, Shieh WY, Lin SY, Tseng C-M, Chiang P-W et al. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 2007; 57:1209–1216 [View Article]
    [Google Scholar]
  50. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 2008; 58:2589–2596
    [Google Scholar]
  51. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman sea. Antonie Van Leeuwenhoek 2013; 103:877–884 [View Article]
    [Google Scholar]
  52. Park S, Kang C-H, Won S-M, Park J-M, Kim B-C et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015; 65:3603–3608 [View Article]
    [Google Scholar]
  53. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015; 65:1498–1503
    [Google Scholar]
  54. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie Van Leeuwenhoek 2015; 107:119–132 [View Article]
    [Google Scholar]
  55. Park S, Choi SJ, Park J-M, Yoon J-H. Alteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:2791–2797 [View Article]
    [Google Scholar]
  56. Shi X-L, Wu Y-H, Jin X-B, Wang C-S, Xu X-W et al. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:237–242
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003773
Loading
/content/journal/ijsem/10.1099/ijsem.0.003773
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error