1887

Abstract

Strain 10.2.2 was isolated from a root nodule of a plant growing near Skammestein (Norway). Phenotypic and chemotaxonomic characterization revealed that colonies grown on yeast–mannitol broth agar were circular, convex and slimy. Growth occurred at 28 °C in 0–1 % NaCl and in a pH range from above 4 to 10. Cells were resistant to kanamycin and phosphomycin. They could assimilate carbon sources such as -lysine, -mannose, -mannitol, and -alanine. Major fatty acids found in the organism were 11-methyl C ω7, C , C ω7, C and C cyclo ω8. Genome sequencing and characterization of the genome revealed its size to be 8.27 Mbp with a G+C content of 62.4 mol%. Phylogenetic analyses based on the 16S rRNA gene and housekeeping gene alignments placed this strain within the genus . Pairwise genome-wide average nucleotide identity values supported that strain 10.2.2 represents a new species, for which we propose the name sp. nov. with the type strain 10.2.2 (=DSM 108834=LMG 31153).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003769
2019-10-18
2019-11-17
Loading full text...

Full text loading...

References

  1. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN et al. The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2013;368: 20130164 [CrossRef]
    [Google Scholar]
  2. Roberts B. Biological nitrogen fixation. Annu Rev Plant Physiol 1993;29: 263– 276
    [Google Scholar]
  3. Bohlool BB, Ladha JK, Garrity DP, George T. Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 1992;141: 1– 11 [CrossRef]
    [Google Scholar]
  4. Considine MJ, Siddique KHM, Foyer CH. Nature's pulse power: legumes, food security and climate change. J Exp Bot 2017;68: 1815– 1818 [CrossRef]
    [Google Scholar]
  5. Stagnari F, Maggio A, Galieni A, Pisante M. Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 2017;4: 2 [CrossRef]
    [Google Scholar]
  6. United Nations Transforming our world: the 2030 agenda for sustainable development. UN DESA 2015
    [Google Scholar]
  7. Brenner DJ, Krieg NR, Staley JT. Bergey's manual of systematic bacteriology Volume 2 : The Proteobacteria. Bergeys Manual of Systematic Bacteriology Volume 1100 2005
    [Google Scholar]
  8. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997;47: 895– 898 [CrossRef]
    [Google Scholar]
  9. Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 2014;169: 2– 17 [CrossRef]
    [Google Scholar]
  10. Young PJW, Haukka KE. Diversity and phylogeny of rhizobia. New Phytologist 1996;133: 87– 94
    [Google Scholar]
  11. Andrews M, Andrews ME. Specificity in Legume-Rhizobia symbioses. Int J Mol Sci 2017;18: E705 [CrossRef]
    [Google Scholar]
  12. Maxted N, Ambrose M. Plant genetic resources of legumes in the Mediterranean In Maxted N, Bennett SJ. (editors) Plant Genetic Resources of Legumes in the Mediterranean Dordrecht: Springer Netherlands; 2001; pp 181– 190
    [Google Scholar]
  13. Jarvis BDW, Pankhurst CE, Patel JJ, loti R. A new species of legume root nodule bacteria. Int J Syst Evol 1982;32: 378– 380
    [Google Scholar]
  14. Marcos-García M, Menéndez E, Ramírez-Bahena MH, Mateos PF, Peix Álvaro et al. Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. Int J Syst Evol Microbiol 2017;67: 2301– 2305 [CrossRef]
    [Google Scholar]
  15. Lorite MJ, Flores-Félix JD, Peix Álvaro, Sanjuán J, Velázquez E. Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 2016;39: 557– 561 [CrossRef]
    [Google Scholar]
  16. Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M. Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype. New Phytol 2012;196: 561– 573 [CrossRef]
    [Google Scholar]
  17. Röhm M, Werner D. Nitrate levels affect the development of the black locust-Rhizobium symbiosis. Trees 1991;5: 227– 231 [CrossRef]
    [Google Scholar]
  18. Liang J, Hoffrichter A, Brachmann A, Marín M. Complete genome of Rhizobium leguminosarum Norway, an ineffective Lotus micro-symbiont. Stand Genomic Sci 2018;13: 36 [CrossRef]
    [Google Scholar]
  19. William S, Feil HAC. 2012; Bacterial genomic DNA isolation using CTAB. Joint genome Institute, Walnut Creek, CA http://jgi.doe.gov/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf
    [Google Scholar]
  20. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67: 2053– 2057 [CrossRef]
    [Google Scholar]
  21. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29: 1072– 1075 [CrossRef]
    [Google Scholar]
  22. Médigue C, Calteau A, Cruveiller S, Gachet M, Gautreau G et al. MicroScope—an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Brief Bioinform 2017;44: [CrossRef]
    [Google Scholar]
  23. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S et al. MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013;41: D636– D647 [CrossRef]
    [Google Scholar]
  24. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. Microscope: a platform for microbial genome annotation and comparative genomics. Database 2009 2009; bap021
    [Google Scholar]
  25. Klioutchnikov G, Kriventseva EV, Zdobnov EM, Seppey M, Waterhouse RM et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 2017;35: 543– 548
    [Google Scholar]
  26. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;31: 3210– 3212 [CrossRef]
    [Google Scholar]
  27. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 2000;7: 331– 338 [CrossRef]
    [Google Scholar]
  28. Marcos-García M, Menéndez E, Cruz-González X, Velázquez E, Mateos PF et al. The high diversity of Lotus corniculatus endosymbionts in soils of northwest Spain. Symbiosis 2015;67: 11– 20 [CrossRef]
    [Google Scholar]
  29. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017;30: [CrossRef]
    [Google Scholar]
  30. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30: 1312– 1313 [CrossRef]
    [Google Scholar]
  31. Miller MA, Pfeiffer W, Schwartz T. The CIPRES Science Gateway New York, USA: ACM Press; 2012
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  33. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102: 2567– 2572 [CrossRef]
    [Google Scholar]
  34. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD et al. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002;184: 3086– 3095 [CrossRef]
    [Google Scholar]
  35. Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011;34: 96– 104 [CrossRef]
    [Google Scholar]
  36. Lorite MJ, Estrella MJ, Escaray F, Sannazzaro A, Videira e Castro IM. The Rhizobia-Lotus symbioses: deeply specific and widely diverse. 2055;2018 9
  37. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35: 1547– 1549 [CrossRef]
    [Google Scholar]
  38. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000;28: 1102– 1104 [CrossRef]
    [Google Scholar]
  39. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42: 989– 1005 [CrossRef]
    [Google Scholar]
  40. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE, Acids F. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38: 358– 361 [CrossRef]
    [Google Scholar]
  41. Miller L T. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. Journal of Clinical Microbiology 1982;16: 584– 586
    [Google Scholar]
  42. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobiumerdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobiumjarvisii sp. nov. Int J Syst Evol Microbiol 2015;65: 1703– 1708 [CrossRef]
    [Google Scholar]
  43. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 1994;44: 511– 522 [CrossRef]
    [Google Scholar]
  44. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol 2016;66: 786– 795 [CrossRef]
    [Google Scholar]
  45. De Meyer SE, Willems A, Wee Tan H, Andrews M, Heenan PB. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 2015;65: 3419– 3426 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003769
Loading
/content/journal/ijsem/10.1099/ijsem.0.003769
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error