1887

Abstract

A Gram-strain positive, mycelium-forming actinomycete, YIM 121212, was isolated from an alkaline soil sample collected in Yunnan province, PR China. Classification using a polyphasic approach indicated that YIM 121212 represents a member of the genus , and is closely related to SCSIO 11529 (99.31 %), SP28S-3 (99.17 %), 12-833 (97.43 %), RIPI (97.03 %), MS498 (96.74 %), DSM 43194 (96.54 %) and 05-Be-005 (95.92 %). Average nucleotide identity values (ANI) of YIM 121212 to DSM 45821 and CGMCC 4.7182 were 93.1 and 92.8 %, respectively, which were lower than the threshold of 95 %. The digital DNA–DNA hybridization (dDDH) values between YIM 121212 and these two species were 50.8 and 49.9 %, respectively and thus were also well below the cut off value (>70 %) for species delineation. The DNA G+C content of YIM 121212 is 70.8 mol%. Major fatty acids are -C, -CH, Cω7/-C 2OH, Cω6, and Cω8. The predominant menaquinone is MK-9(H). The polar lipid profile consists of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylmethylethanolamine (PME), phosphatidylinositol (PI), and phosphatidylinositol mannoside (PIM). The draft genomes were further analyzed for the presence of secondary metabolite biosynthesis (SMB) gene clusters. On the basis of the above observations, YIM121212 can be distinguished from closely related species belonging to the genus . Thus, YIM121212 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM121212 (=CCTCC AA 2013011=DSM 45973).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003768
2019-10-31
2019-11-19
Loading full text...

Full text loading...

References

  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016;80: 1– 43 [CrossRef]
    [Google Scholar]
  2. Kim SB, Goodfellow M. Reclassification of Amycolatopsis rugosa Lechevalier et al. 1986 as Prauserella rugosa gen. nov., comb. nov. Int J Syst Bacteriol 1999;49: 507– 512 [CrossRef]
    [Google Scholar]
  3. Li WJ, Xu P, Tang SK, Xu LH, Kroppenstedt RM et al. Prauserella halophila sp. nov. and Prauserella alba sp. nov., moderately halophilic actinomycetes from saline soil. Int J Syst Evol Microbiol 2003;53: 1545– 1549 [CrossRef]
    [Google Scholar]
  4. Li Y, Tang SK, Chen YG, Wu JY, Zhi XY et al. Prauserella salsuginis sp. nov., Prauserella flava sp. nov., Prauserella aidingensis sp. nov. and Prauserella sediminis sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 2009;59: 2923– 2928 [CrossRef]
    [Google Scholar]
  5. Schäfer J, Martin K, Kämpfer P. Prauserella muralis sp. nov., from the indoor environment. Int J Syst Evol Microbiol 2010;60: 287– 290 [CrossRef]
    [Google Scholar]
  6. Wang J, Li Y, Bian J, Tang SK, Ren B et al. Prauserella marina sp. nov., isolated from ocean sediment of the South China Sea. Int J Syst Evol Microbiol 2010;60: 985– 989 [CrossRef]
    [Google Scholar]
  7. Wu JF, Li J, You ZQ, Zhang S. Prauserella coralliicola sp. nov., isolated from the coral galaxea fascicularis. Int J Syst Evol Microbiol 2014;64: 3341– 3345 [CrossRef]
    [Google Scholar]
  8. Liu JM, Habden X, Guo L, Tuo L, Jiang ZK et al. Prauserella endophytica sp. nov., an endophytic actinobacterium isolated from Tamarix taklamakanensis. Antonie van Leeuwenhoek 2015;107: 1401– 1409 [CrossRef]
    [Google Scholar]
  9. Almutairi A. Prauserella soli sp. nov., isolated from crude oil-contaminated soil. Int J Syst Evol Microbiol 2015;65: 3060– 3065 [CrossRef]
    [Google Scholar]
  10. Saker R, Bouras N, Meklat A, Zitouni A, Schumann P et al. Prauserella isguenensis sp. nov., a halophilic actinomycete isolated from desert soil. Int J Syst Evol Microbiol 2015;65: 1598– 1603 [CrossRef]
    [Google Scholar]
  11. Dastgheib SMM, Tirandaz H, Moshtaghi Nikou M, Ramezani M, Shavandi M et al. Prauserella oleivorans sp. nov., a halophilic and thermotolerant crude-oil-degrading actinobacterium isolated from an oil-contaminated mud pit. Int J Syst Evol Microbiol 2017;67: 3381– 3386 [CrossRef]
    [Google Scholar]
  12. Liu M, Zhang L, Ren B, Yang N, Yu X et al. Prauserella shujinwangii sp. nov., from a desert environment. Int J Syst Evol Microbiol 2014;64: 3833– 3837
    [Google Scholar]
  13. Li J, Dong JD, Yang J, Luo XM, Zhang S. Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes. Antonie van Leeuwenhoek 2014;106: 623– 635 [CrossRef]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16: 313– 340 [CrossRef]
    [Google Scholar]
  15. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Published in US Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  16. Doetsch RN. Determinative methods of light microscopy In Gerhardt P, Murray RGE, Costilow RN. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp 21– 33
    [Google Scholar]
  17. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5: 123– 127 [CrossRef]
    [Google Scholar]
  18. Athalye M, Goodfellow M, Lacey J, White RP. Numerical classification of Actinomadura and Nocardiopsis. Int J Syst Bacteriol 1985;35: 86– 98 [CrossRef]
    [Google Scholar]
  19. Pridham TG, Gottlieb D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol 1948;56: 107– 114
    [Google Scholar]
  20. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55: 1149– 1153 [CrossRef]
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  22. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 1983;29: 319– 322 [CrossRef]
    [Google Scholar]
  23. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20: 435– 443 [CrossRef]
    [Google Scholar]
  24. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009;59: 2025– 2032 [CrossRef]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef]
    [Google Scholar]
  26. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983;54: 31– 36 [CrossRef]
    [Google Scholar]
  27. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47: 87– 95 [CrossRef]
    [Google Scholar]
  28. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48: 459– 470 [CrossRef]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China). Int J Syst Evol Microbiol 2007;57: 1424– 1428 [CrossRef]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  34. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  36. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  38. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44: 6614– 6624 [CrossRef]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef]
    [Google Scholar]
  41. Kim M, HS O, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;6: 346– 351
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  43. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. AntiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017;45: W36– W41 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003768
Loading
/content/journal/ijsem/10.1099/ijsem.0.003768
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error