1887

Abstract

A novel alphaproteobacterium, strain WS11, was isolated from a deep-sea sediment sample collected from the New Britain Trench. The full-length 16S rRNA gene of strain WS11 had the highest sequence similarity of 97.6 % to JC85, followed by DSM 7292 (96.9 %) and Po 20/26 (96.8 %). Phylogenetic analysis of concatenated 16S rRNA, and gene sequences showed that strain WS11 was deeply separated from the species within the family . Phylogenomic analysis based on the whole-genome protein sequences showed that strain WS11 formed an independent monophyletic branch in the family , paralleled with the species in the families and within the order es. Cells were Gram-stain-negative, oxidase- and catalase-positive, and aerobic short rods (1.5–2.4×0.9–1.0 µm). Growth was observed at salinities ranging from 0 to 5% (optimum, 1 %), from pH 6.5 to 9 (optimum, pH 7) and at temperatures between 20 and 30 °C (optimum, 28 °C). Strain WS11 was piezotolerant, growing optimally at 0.1 MPa (range 0.1–70 MPa). The main fatty acid was summed feature 8 (C 7/C ). The sole respiratory quinone was ubiquinone-10 (Q-10). The predominant polar lipids were phosphatidylcholine, two unidentified aminophospholipids and an unidentified phospholipid. The genome size was about 4.36 Mbp and the G+C content was 62.3 mol%. The combined genotypic and phenotypic data show that strain WS11 represents a novel species of a novel genus in the family , for which the name gen. nov., sp. nov. is proposed (type strain WS11=MCCC 1K03498=KCTC 62439).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003766
2019-10-15
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.003766/ijsem003766.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003766&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Alphaproteobacteria class. nov. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  2. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68: 1825– 1829 [CrossRef]
    [Google Scholar]
  3. Skerman VBD, Sneath PHA, Mcgowan V. Approved Lists of bacterial names. Int J Syst Evol Microbiol 1980;30: 225– 420 [CrossRef]
    [Google Scholar]
  4. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R et al. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 1998;48 Pt 4: 1277– 1290 [CrossRef]
    [Google Scholar]
  5. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L et al. Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 2013;63: 4484– 4488 [CrossRef]
    [Google Scholar]
  6. LEC J. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Evol Microbiol 1982;32: 339– 345
    [Google Scholar]
  7. Tóth E, Szuróczki S, Kéki Z, Bóka K, Szili-Kovács T et al. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 2017;67: 4565– 4571 [CrossRef]
    [Google Scholar]
  8. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014;37: 208– 215 [CrossRef]
    [Google Scholar]
  9. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015;38: 84– 90 [CrossRef]
    [Google Scholar]
  10. Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM et al. Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic mediterranean zone. Syst Appl Microbiol 2015;38: 293– 299 [CrossRef]
    [Google Scholar]
  11. An DS, Im WT, Yang HC, Lee ST. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 2006;56: 443– 448 [CrossRef]
    [Google Scholar]
  12. Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: a Laboratory Manual , 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  13. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 2016;66: 3904– 3911 [CrossRef]
    [Google Scholar]
  14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10: 563– 569 [CrossRef]
    [Google Scholar]
  15. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012;30: 693– 700 [CrossRef]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28: 2731– 2739 [CrossRef]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  20. Zuo G, Hao B. CVTree3 web server for Whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinf 2015;13: 321– 331 [CrossRef]
    [Google Scholar]
  21. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  22. Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A. Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 2016;66: 2354– 2361 [CrossRef]
    [Google Scholar]
  23. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V et al. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol 2014;64: 3402– 3410 [CrossRef]
    [Google Scholar]
  24. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  25. Lai Q, Cao J, Yuan J, Li F, Shao Z. Celeribacter indicus sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int J Syst Evol Microbiol 2014;64: 4160– 4167 [CrossRef]
    [Google Scholar]
  26. Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 1995;4: 1– 9 [CrossRef]
    [Google Scholar]
  27. Ostle AG, Holt JG. Nile blue a as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 1982;44: 238– 241
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, De: MIDI; 1990
    [Google Scholar]
  29. Wu YH, Xu L, Zhou P, Wang C-S, Oren A et al. Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 2015;65: 3645– 3651 [CrossRef]
    [Google Scholar]
  30. Tindall B, Sikorski J, Smibert R, Krieg N. Phenotypic characterization and the principles of comparative systematics In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. eds Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007; pp 330– 393
    [Google Scholar]
  31. Huang Z, Guo F, Lai Q, Shao Z. Notoacmeibacter marinus gen. nov., sp. nov., isolated from the gut of a limpet and proposal of Notoacmeibacteraceae fam. nov. in the order Rhizobiales of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2017;67: 2527– 2531 [CrossRef]
    [Google Scholar]
  32. Ramana CV, Parag B, Girija KR, Ram BR, Ramana VV et al. Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 2013;63: 581– 585 [CrossRef]
    [Google Scholar]
  33. Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR. Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 2012;62: 1997– 2003 [CrossRef]
    [Google Scholar]
  34. Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W et al. Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 2016;66: 398– 406 [CrossRef]
    [Google Scholar]
  35. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 2008;58: 2484– 2490 [CrossRef]
    [Google Scholar]
  36. Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD et al. Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 2011;61: 816– 822 [CrossRef]
    [Google Scholar]
  37. Matsui T, Shinzato N, Tamaki H, Muramatsu M, Hanada S. Shinella yambaruensis sp. nov., a 3-methyl-sulfolane-assimilating bacterium isolated from soil. Int J Syst Evol Microbiol 2009;59: 536– 539 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003766
Loading
/content/journal/ijsem/10.1099/ijsem.0.003766
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error