1887

Abstract

A new aerobic betaproteobacterium, strain SA-152, was isolated from the water of a crater lake. 16S rRNA gene sequence analysis revealed that strain SA-152 belonged to the family (order ) and was phylogenetically related to S20-91 with 97.09 % and to ULPAs1 with 96.00 % 16S rRNA gene pairwise sequence similarity. Cells of strain SA-152 were rod-shaped, non-motile, oxidase-negative and catalase-positive. Its fatty acid profile was dominated by two fatty acids, C 7 and C, the major respiratory quinones were Q-8 and Q-7, and the main polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of the genomic DNA of strain SA-152 was 48.3 mol%. The new bacterium can be distinguished from closely related genera , , and based on its non-motile and oxidase-negative cells. On the basis of the phenotypic, chemotaxonomic and genomic data, strain SA-152 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is SA-152 (=DSM 29805=NCAIM B.02613).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003761
2019-10-08
2019-11-19
Loading full text...

Full text loading...

References

  1. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M. The Family Oxalobacteraceae In Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes, Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin: Springer-Verlag; 2014; pp 919– 974
    [Google Scholar]
  2. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  3. Magyari E, Buczkó K, Jakab G, Braun M, Pál Z et al. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes. Hydrobiologia 2009;631: 29– 63 [CrossRef]
    [Google Scholar]
  4. Felföldi T, Ramganesh S, Somogyi B, Krett G, Jurecska L et al. Winter planktonic microbial communities in highland aquatic habitats. Geomicrobiol J 2016;33: 494– 504 [CrossRef]
    [Google Scholar]
  5. Máthé I, Tóth E, Mentes A, Szabó A, Márialigeti K et al. A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie van Leeuwenhoek 2018;111: 2175– 2183 [CrossRef]
    [Google Scholar]
  6. Felföldi T, Márton Z, Szabó A, Mentes A, Bóka K et al. Siculibacillus lacustris gen. nov., sp. nov., a new rosette-forming bacterium isolated from a freshwater crater lake (Lake St. Ana, Romania). Int J Syst Evol Microbiol 2019
    [Google Scholar]
  7. Felföldi T, Vengring A, Kéki Z, Márialigeti K, Schumann P et al. Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 2014;64: 1920– 1925 [CrossRef]
    [Google Scholar]
  8. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992;8: 451– 452 [CrossRef]
    [Google Scholar]
  9. Heimbrook ME, Wang WL, Campbell G. Staining bacterial flagella easily. J Clin Microbiol 1989;27: 2612– 2615
    [Google Scholar]
  10. Tarrand JJ, Gröschel DH, Rapid GDHM. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16: 772– 774
    [Google Scholar]
  11. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  12. Felföldi T, Kéki Z, Sipos R, Márialigeti K, Tindall BJ et al. Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 2011;61: 2146– 2150 [CrossRef]
    [Google Scholar]
  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef]
    [Google Scholar]
  14. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29: 1072– 1075 [CrossRef]
    [Google Scholar]
  15. Bushnell B. 2014; BBMap: a fast, accurate, splice-aware aligner. https://sourceforge.net/projects/bbmap/
  16. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67: 2053– 2057 [CrossRef]
    [Google Scholar]
  17. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5: 109– 118 [CrossRef]
    [Google Scholar]
  18. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39: 159– 167 [CrossRef]
    [Google Scholar]
  19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25: 125– 128 [CrossRef]
    [Google Scholar]
  20. Felföldi T, Fikó RD, Mentes A, Kovács E, Máthé I et al. Quisquiliibacterium transsilvanicum gen. nov., sp. nov., a novel betaproteobacterium isolated from a waste-treating bioreactor. Int J Syst Evol Microbiol 2017;67: 4742– 4746 [CrossRef]
    [Google Scholar]
  21. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28: 1823– 1829 [CrossRef]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  23. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  24. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016;4: e1900v1
    [Google Scholar]
  25. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011;27: 171– 180 [CrossRef]
    [Google Scholar]
  26. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17: 754– 755 [CrossRef]
    [Google Scholar]
  27. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees Proceedings of the Gateway Computing Environments Workshop (GCE) New Orleans: 2010; pp 1– 8
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  29. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014;42: e73 [CrossRef]
    [Google Scholar]
  30. Margesin R, Albuquerque L, Zhang DC, Froufe HJC, Severino R et al. Solimicrobium silvestre gen. nov., sp. nov., isolated from alpine forest soil. Int J Syst Evol Microbiol 2018;68: 2491– 2498 [CrossRef]
    [Google Scholar]
  31. Eder W, Wanner G, Ludwig W, Busse HJ, Ziemke-Kägeler F et al. Description of Undibacterium oligocarboniphilum sp. nov., isolated from purified water, and Undibacterium pigrum strain CCUG 49012 as the type strain of Undibacterium parvum sp. nov., and emended descriptions of the genus Undibacterium and the species Undibacterium pigrum. Int J Syst Evol Microbiol 2011;61: 384– 391 [CrossRef]
    [Google Scholar]
  32. Fernandes C, Rainey FA, Nobre MF, Pinhal I, Folhas F et al. Herminiimonas fonticola gen. nov., sp. nov., a betaproteobacterium isolated from a source of bottled mineral water. Syst Appl Microbiol 2005;28: 596– 603 [CrossRef]
    [Google Scholar]
  33. Kämpfer P, Busse HJ, Falsen E. Herminiimonas aquatilis sp. nov., a new species from drinking water. Syst Appl Microbiol 2006;29: 287– 291 [CrossRef]
    [Google Scholar]
  34. Muller D, Simeonova DD, Riegel P, Mangenot S, Koechler S et al. Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 2006;56: 1765– 1769 [CrossRef]
    [Google Scholar]
  35. Kämpfer P, Glaeser SP, Lodders N, Busse HJ, Falsen E. Herminiimonas contaminans sp. nov., isolated as a contaminant of biopharmaceuticals. Int J Syst Evol Microbiol 2013;63: 412– 417 [CrossRef]
    [Google Scholar]
  36. Loveland-Curtze J, Miteva VI, Brenchley JE. Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep greenland glacial ice. Int J Syst Evol Microbiol 2009;59: 1272– 1277 [CrossRef]
    [Google Scholar]
  37. Lang E, Swiderski J, Stackebrandt E, Schumann P, Spröer C et al. Herminiimonas saxobsidens sp. nov., isolated from a lichen-colonized rock. Int J Syst Evol Microbiol 2007;57: 2618– 2622 [CrossRef]
    [Google Scholar]
  38. Kämpfer P, Rosselló-Mora R, Hermansson M, Persson F, Huber B et al. Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2007;57: 1510– 1515 [CrossRef]
    [Google Scholar]
  39. Chen WM, Hsieh TY, Young CC, Sheu SY. Undibacterium amnicola sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 2017;67: 5094– 5101 [CrossRef]
    [Google Scholar]
  40. Du J, Akter S, Won K, Singh H, Shik Yin C et al. Undibacterium aquatile sp. nov., isolated from a waterfall. Int J Syst Evol Microbiol 2015;65: 4128– 4133 [CrossRef]
    [Google Scholar]
  41. Li X, Chang X, Zhang Y, Liu Z, Da X et al. Undibacterium arcticum sp. nov., isolated from arctic alpine soil. Int J Syst Evol Microbiol 2016;66: 2797– 2802 [CrossRef]
    [Google Scholar]
  42. Kämpfer P, Irgang R, Busse HJ, Poblete-Morales M, Kleinhagauer T et al. Undibacterium danionis sp. nov. isolated from a zebrafish (Danio rerio). Int J Syst Evol Microbiol 2016;66: 3625– 3631 [CrossRef]
    [Google Scholar]
  43. Kim SJ, Moon JY, Weon HY, Hong SB, Seok SJ et al. Undibacterium jejuense sp. nov. and Undibacterium seohonense sp. nov., isolated from soil and freshwater, respectively. Int J Syst Evol Microbiol 2014;64: 236– 241 [CrossRef]
    [Google Scholar]
  44. Sheu SY, Lin YS, Chen JC, Chen WM. Undibacterium macrobrachii sp. nov., isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol 2014;64: 1036– 1042 [CrossRef]
    [Google Scholar]
  45. Sheu SY, Lin YS, Chen JC, Kwon SW, Chen WM. Undibacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol 2014;64: 3459– 3466 [CrossRef]
    [Google Scholar]
  46. Liu YQ, Wang BJ, Zhou N, Liu SJ. . Undibacterium terreum sp. nov., isolated from permafrost soil. Int J Syst Evol Microbiol 2013;63: 2296– 2300 [CrossRef]
    [Google Scholar]
  47. Austin DA, Moss MO. Numerical taxonomy of red-pigmented bacteria isolated from a lowland river, with the description of a new taxon, Rugamonas rubra gen. nov., sp. nov. Microbiology 1986;132: 1899– 1909 [CrossRef]
    [Google Scholar]
  48. Parte AC. LPSN - List of Prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68: 1825– 1829 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003761
Loading
/content/journal/ijsem/10.1099/ijsem.0.003761
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error