1887

Abstract

A Gram-stain-negative, rod-shaped, motile, facultatively aerobic and ivory-pigmented bacterium (designated strain LA-55) was isolated from a river in the Republic of Korea. On the basis of 16S rRNA gene sequencing, strain LA-55 clustered with species of the genus and was closely related to KSL-102 (97.3 %), DSM 4731 (97.1 %), NHI-13 (97.0 %), FDRGB2b (97.0 %) and DSM 17977 (97.0 %). The average nucleotide identity value between strain LA-55 and its closest-related strain was 74.1 %, indicating that strain LA-55 represents a novel species of the genus . Growth occurred at 15–40 °C on Reasoner's 2A medium in the presence of 0–2 % NaCl (w/v) and at pH 6.0–8.0. The genomic DNA G+C content was 70.5 mol% and ubiquinone 10 (Q-10) was the major respiratory quinone. The major cellular fatty acids (>5 %) were C 6 and/or C 7 (summed feature 8), C, C 6 and/or C 7 (summed feature 3) and C 7 11-methyl. The polar lipids consisted of phosphatidylglycerol, 1,2-di--acyl-3--[d-glucopyranosyl-(1→4)---glucopyranuronosyl]glycerol, 1,2-di--acyl-3---glucopyranuronosyl glycerol, unidentified aminolipid, unidentified phosphoglycolipid and unidentified lipids. Physiological and biochemical characteristics indicated that strain LA-55 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LA-55 (=KACC 19639=LMG 30850).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003736
2019-10-09
2019-10-22
Loading full text...

Full text loading...

References

  1. Segers P, Vancanneyt M, Pot B, Ttrck U, Hoste B et al. Classification of Pseudomonas diminuta (Leifson & Hugh 1954) and Pseudomonas vesicularis (Büsing, Döll & Freytag 1953) in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Evol Microbiol 1994;44: 499– 510
    [Google Scholar]
  2. Vancanneyt M, Segers P, Abraham WR, Brevundimonas VPD. Bergey’s Manual of Systematics of Archaea and Bacteria NJ: John Wiley & Sons, Inc., in association with Bergey’s Manual Trust; 2015; pp 1– 14
    [Google Scholar]
  3. Tsubouchi T, Koyama S, Mori K, Shimane Y, Usui K et al. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 2014;64: 3709– 3716 [CrossRef]
    [Google Scholar]
  4. Dahal RH, Kim J. Brevundimonas humi sp. nov., an alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018;68: 709– 714 [CrossRef]
    [Google Scholar]
  5. Yoon JH, Kang SJ, Oh HW, Lee JS, Oh TK. Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 2006;56: 613– 617 [CrossRef]
    [Google Scholar]
  6. Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 1999;49 Pt 3: 1053– 1073 [CrossRef]
    [Google Scholar]
  7. Pham VHT, Jeong S, Chung S, Kim J. Brevundimonas albigilva sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66: 1144– 1150 [CrossRef]
    [Google Scholar]
  8. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017;67: 1033– 1038 [CrossRef]
    [Google Scholar]
  9. Ryu SH, Park M, Lee JR, Yun PY, Jeon CO. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol 2007;57: 1561– 1565 [CrossRef]
    [Google Scholar]
  10. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44: 992– 993
    [Google Scholar]
  11. Weon HY, Kim BY, Joa JH, Son JA, Song MH et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008;58: 93– 96 [CrossRef]
    [Google Scholar]
  12. Cappuccino JG, Sherman N. Microbiology, a laboratory manual, 6th ed. California: Pearson Education, Inc.; 2002
    [Google Scholar]
  13. Atlas RM. Handbook of Microbiological Media Boca Raton, Florida, USA: CRC Press; 1993
    [Google Scholar]
  14. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  17. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999;41: 95– 98
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25: 4876– 4882 [CrossRef]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  23. Xu GT, Piao C, Chang JP, Guo LM, Yang XQ et al. Sinorhodobacter populi sp. nov., isolated from the symptomatic bark tissue of Populus × euramericana canker. Int J Syst Evol Microbiol 2019;69: 1220– 1224 [CrossRef]
    [Google Scholar]
  24. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44: 6614– 6624 [CrossRef]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42: 457– 469 [CrossRef]
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial Systematics. Methods Microbiol 1987;19: 161– 203
    [Google Scholar]
  29. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64: 346– 351 [CrossRef]
    [Google Scholar]
  30. Dahal RH, Kim J. Brevundimonas humi sp. nov., an alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018;68: 709– 714 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003736
Loading
/content/journal/ijsem/10.1099/ijsem.0.003736
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error