1887

Abstract

A Gram-stain-negative, non-motile, rod-shaped, oxidase-positive, red-pigmented bacterium, strain N3, was isolated from Fuxian lake, a freshwater lake in Yunnan Province, PR China. Strain N3 was facultatively anaerobic, heterotrophic and negative for catalase. Optimal growth occurred at 30 °C (range 4–45 °C), pH 7.0–8.0 (range 6.5–9.5) and in the presence of 0–3 % (w/v) NaCl (range 0–3 %). The results of phylogenetic analysis based on 16S rRNA gene sequencing revealed that strain N3 was close to the type strains of , and with sequence similarities of 97.4, 97.3 and 97.2 % respectively. The G+C content of the genomic DNA was 43.9 mol%. The quinone system contained menaquinone MK-7 as the sole component. The major fatty acids were iso-C, summed feature 9 (10-methyl C and/or iso-C 9), summed feature 3 (C 6 and/or C ) and iso-C. Major polar lipids were phosphatidylcholine, phosphatidylethanolamine, an unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids and four unidentified lipids. On the basis of physiological, chemotaxonomic and molecular properties as well as phylogenetic distinctiveness, strain N3 should be placed into the genus as a novel species, for which the name sp. nov. is proposed. The type strain is N3 (=KCTC 62622=MCCC 1H00308).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31770002)
    • Principle Award Recipient: Xiao-Man Wang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003734
2020-02-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/193.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003734&mimeType=html&fmt=ahah

References

  1. Bowman JP, Nichols CM, Gibson JAE. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343–1355 [View Article]
    [Google Scholar]
  2. Jia X, Jia B, Kim KH, Jeon CO. Algoriphagus Aestuariicola sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2017; 67:914–919 [View Article]
    [Google Scholar]
  3. Park S, Park JM, Yoon JH. Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2017; 67:4168–4174 [View Article]
    [Google Scholar]
  4. Han JR, Geng QL, Wang FQ, Du ZJ, Chen GJ. Algoriphagus marinus sp. nov., isolated from marine sediment and emended description of the genus Algoriphagus . Int J Syst Evol Microbiol 2017; 67:2412–2417 [View Article]
    [Google Scholar]
  5. Park S, Park JM, Yoon JH. Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2017; 67:4168–4174 [View Article]
    [Google Scholar]
  6. Han JR, Zhao JX, Wang ZJ, ZJ D, Chen GJ. Algoriphagus resistens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:1275–1280
    [Google Scholar]
  7. Yoon JH, Lee MH, Kang SJ, TK O. Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:777–780 [View Article]
    [Google Scholar]
  8. Lee DH, Kahng HY, Lee SB. Algoriphagus jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:409–413 [View Article]
    [Google Scholar]
  9. KH O, Kang SJ, Lee SY, Park S, TK O et al. Algoriphagus namhaensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:575–579
    [Google Scholar]
  10. Jia X, Jia B, Kim KH, Jeon CO. Algoriphagus Aestuariicola sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2017; 67:914–919 [View Article]
    [Google Scholar]
  11. Kim H, Joung Y, Joh K. Algoriphagus taeanensis sp. nov., isolated from a tidal flat, and emended description of Algoriphagus hitonicola . Int J Syst Evol Microbiol 2014; 64:21–26 [View Article]
    [Google Scholar]
  12. Kang H, Weerawongwiwat V, Jung MY, Myung SC, Kim W. Algoriphagus chungangensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2013; 63:648–653 [View Article]
    [Google Scholar]
  13. Park S, Kang SJ, Oh KH, Oh TK, Yoon JH. Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2010; 60:200–204 [View Article]
    [Google Scholar]
  14. Rau JE, Blotevogel KH, Fischer U. Algoriphagus aquaeductus sp. nov., isolated from a freshwater pipe. Int J Syst Evol Microbiol 2012; 62:675–682 [View Article]
    [Google Scholar]
  15. Inan K, Canakci S, Ozer A, Osman Belduz A, Kacagan M. Algoriphagus trabzonensis sp. nov., isolated from freshwater, and emended description of Algoriphagus alkaliphilus . Int J Syst Evol Microbiol 2015; 65:2234–2240 [View Article]
    [Google Scholar]
  16. Ahmed I, Yokota A, Fujiwara T. Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 2007; 57:986–992 [View Article]
    [Google Scholar]
  17. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004; 54:1969–1973 [View Article]
    [Google Scholar]
  18. YX L, Yan SL, Yong Q, ZZ Q, Zhang XH et al. Algoriphagus faecimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2011; 61:2856–2860
    [Google Scholar]
  19. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018
    [Google Scholar]
  20. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  22. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  29. Dong XZ, Cai MY. Chapter 14. Determination of biochemical characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press (in Chinese); 2001 pp 370–398
    [Google Scholar]
  30. Zhou YX, Du ZJ, Chen GJ. Seonamhaeicola algicola sp. nov., a complex-polysaccharide-degrading bacterium isolated from Gracilaria blodgettii, and emended description of the genus Seonamhaeicola . Int J Syst Evol Microbiol 2016; 66:2064–2068 [View Article]
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  32. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  33. XW X, YH W, Wang CS, Oren A, Zhou PJ et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57:717–720
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003734
Loading
/content/journal/ijsem/10.1099/ijsem.0.003734
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error