1887

Abstract

Two Gram-stain-negative, catalase- and oxidase-positive, facultative anaerobic and rod-shaped motile bacteria, designated strains BEI176 and BEI207, were isolated from seawater collected in the East China Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains BEI176 and BEI207 belonged to the genus and were closely related to each other with 98.18 % similarity. The closest phylogenetic relatives of strain BEI176 were LMG 4409 (98.85 %) and LMG 11216 (98.81 %), whereas the closest relative of strain BEI207 was LMG 20362 (98.64 %). The two strains showed growth at different conditions; while strain BEI176 grew at 16–37 °C, pH 5.0–9.5 and 0–7.0 % (w/v) NaCl, the growth of strain BEI207 occurred at 10–37 °C, pH 6.0–9.5 and 1.0–7.0 % (w/v) NaCl. Both strains shared the same major fatty acid components of summed feature 3 (Cω7 or Cω6), C and summed feature 8 (Cω6 or Cω7). The DNA G+C contents of the assembled genomic sequences were 44.73 and 45.06 mol% for strains BEI176 and BEI207, respectively. Average nucleotide identity values between the two strains and their reference species were lower than the threshold for species delineation (95–96 %); DNA–DNA hybridization further showed that the two strains had less than 70 % similarity to their relatives. Therefore, two novel species are proposed to accommodate them: sp. nov. (type strain, BEI176=MCCC 1K03515=JCM 32690= KCTC 62616) and sp. nov. (type strain, BEI207=MCCC 1K03516=JCM 32691=KCTC 62617).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003732
2019-10-17
2019-11-12
Loading full text...

Full text loading...

References

  1. Farmer JJ, Michael JJ. Genus I Vibrio Pacini 1854, 411ALBergey’s manual of systematic bacteriology. In Garrity GM. (editor) The Proteobacteria, Part B, 2nd ed. New York: Springer Press; 2005; pp. 494– 546
    [Google Scholar]
  2. Zhang X, Lin H, Wang X, Austin B. Significance of Vibrio species in the marine organic carbon cycle—A review. Sci China Earth Sci 2018;61: 1357– 1368 [CrossRef]
    [Google Scholar]
  3. Liang J, Liu J, Wang X, Lin H, Liu J et al. Spatiotemporal Dynamics of Free-Living and Particle-Associated Vibrio Communities in the Northern Chinese Marginal Seas. Appl Environ Microbiol 2019;85: e00217 00219 [CrossRef] [PubMed]
    [Google Scholar]
  4. Wang X, Liu J, Li B, Liang J, Sun H et al. Spatial Heterogeneity of Vibrio spp. in Sediments of Chinese Marginal Seas. Appl Environ Microbiol 2019;85: e03064 18 [CrossRef] [PubMed]
    [Google Scholar]
  5. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019;7: 47
    [Google Scholar]
  6. Gomez-Gil B, Tron-Mayén L, Roque A, Turnbull JF, Inglis V et al. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 1998;163: 1– 9 [CrossRef]
    [Google Scholar]
  7. Poli A, Romano I, Mastascusa V, Buono L, Orlando P et al. Vibrio coralliirubri sp. nov., a new species isolated from mucus of red coral (Corallium rubrum) collected at Procida island, Italy. Antonie van Leeuwenhoek 2018;111: 1105– 1115 [CrossRef] [PubMed]
    [Google Scholar]
  8. Huq A, Small EB, West PA, Huq MI, Rahman R et al. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 1983;45: 275– 283 [PubMed]
    [Google Scholar]
  9. Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev 2004;68: 403– 431 [CrossRef] [PubMed]
    [Google Scholar]
  10. Li CM, Wang NN, Zhou LY, Wang XP, Chen GJ et al. Vibrio albus sp. nov., isolated from marine sediment. Int J Syst Evol Microbio 2019;69: 1919– 1925 [CrossRef] [PubMed]
    [Google Scholar]
  11. Guo Z, Li W, Wang Y, Hou Q, Zhao H et al. Vibrio zhugei sp. nov., a moderately halophilic bacterium isolated from pickling sauce. Int J Syst Evol Microbio 2019;69: 1313– 1319 [CrossRef] [PubMed]
    [Google Scholar]
  12. Zhang NX, Zhang DC, Qiao NH. Vibrio profundi sp. nov., isolated from a deep-sea seamount. Antonie van Leeuwenhoek 2019; 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  13. Meng YC, Liu HC, Zhou YG, Cai M, Kang Y. Vibrio gangliei sp. nov., a novel member of Vibrionaceae isolated from sawdust in a pigpen. Int J Syst Evol Microbiol 2018;68: 1969– 1974 [CrossRef] [PubMed]
    [Google Scholar]
  14. Doi H, Osawa I, Adachi H, Kawada M. Vibrio japonicus sp. nov., a novel member of the Nereis clade in the genus Vibrio isolated from the coast of Japan. PLoS One 2017;12: e0172164 [CrossRef] [PubMed]
    [Google Scholar]
  15. Giubergia S, Machado H, Valentina Mateiu R, Gram L. Vibrio galatheae sp. nov., a member of the family Vibrionaceae isolated from a mussel. Int J Syst Evol Microbiol 2016;66: 347– 352 [CrossRef] [PubMed]
    [Google Scholar]
  16. Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M. Simplified protocols for the preparation of genomic DNA from bacterial cultures. Molecular Microbial Ecology Manual 1999;1: 1– 15
    [Google Scholar]
  17. Zhang Z, Yu C, Wang X, Yu S, Zhang XH. Arcobacter pacificus sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2016;66: 542– 547 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  19. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1: 18 [CrossRef] [PubMed]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9: 75 [CrossRef] [PubMed]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst Biol 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  28. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79: 7696– 7701 [CrossRef] [PubMed]
    [Google Scholar]
  29. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30: 3059– 3066 [CrossRef] [PubMed]
    [Google Scholar]
  30. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25: 1972– 1973 [CrossRef] [PubMed]
    [Google Scholar]
  31. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32: 268– 274 [CrossRef] [PubMed]
    [Google Scholar]
  32. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14: 587– 589 [CrossRef] [PubMed]
    [Google Scholar]
  33. Hoang DT, Vinh LS, Flouri T, Stamatakis A, von Haeseler A et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol Biol 2018;18: 11 [CrossRef] [PubMed]
    [Google Scholar]
  34. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59: 307– 321 [CrossRef] [PubMed]
    [Google Scholar]
  35. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  39. Wang X, Wang Y, Yang X, Sun H, Li B et al. Photobacterium alginatilyticum sp. nov., a marine bacterium isolated from bottom seawater. Int J Syst Evol Microbiol 2017;67: 1912– 1917 [CrossRef] [PubMed]
    [Google Scholar]
  40. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007; pp. 19– 33
    [Google Scholar]
  41. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52: 1049– 1070
    [Google Scholar]
  42. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  43. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002;52: 123– 130 [CrossRef] [PubMed]
    [Google Scholar]
  44. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990;20: 1– 6
    [Google Scholar]
  45. Thompson FL, Thompson CC, Hoste B, Vandemeulebroecke K, Gullian M et al. Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int J Syst Evol Microbiol 2003;53: 1495– 1501 [CrossRef] [PubMed]
    [Google Scholar]
  46. Yang Y, Lp Y, Cao Y, Baumann L, Baumann P et al. Characterization of marine luminous bacteria isolated off the Coast of China and description of Vibrio orientalis sp. nov. Current Microbiology 1983;8: 95– 100
    [Google Scholar]
  47. Alsina M, Blanch AR. A set of keys for biochemical identification of environmental Vibrio species. J Appl Bacteriol 1994;76: 79– 85 [CrossRef] [PubMed]
    [Google Scholar]
  48. Yoshizawa S, Wada M, Kita-Tsukamoto K, Ikemoto E, Yokota A et al. Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2009;59: 1645– 1649 [CrossRef] [PubMed]
    [Google Scholar]
  49. Urbanczyk Y, Ogura Y, Hayashi T, Urbanczyk H. Description of a novel marine bacterium, Vibrio hyugaensis sp. nov., based on genomic and phenotypic characterization. Syst Appl Microbiol 2015;38: 300– 304 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003732
Loading
/content/journal/ijsem/10.1099/ijsem.0.003732
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error