1887

Abstract

A novel actinomycete, designated strain NEAU-HEGS1-5, was isolated from the ear of wheat ( L.) and characterized using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain coincided with those of members of the genus . The results of 16S rRNA gene sequence analysis showed that the isolate was most closely related to NEAU-TX2-2 (99.3 %), 2C-HV3 (99.2 %), JCM 3021 (99.1 %) and subsp. JCM 3006 (98.5 %). However, two tree-making algorithms supported the position that strain NEAU-HEGS1-5 formed a distinct clade with NEAU-TX2-2, 2C-HV3 and subsp JCM 3006. Furthermore, multilocus sequence analysis based on the 16S- - genes and a combination of DNA–DNA hybridization results and some physiological and biochemical properties demonstrated that the strain could be distinguished from its closest relatives. Therefore, it is proposed that strain NEAU-HEGS1-5 should be classified as representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NEAU-HEGS1-5 (=CCTCC AA 2019030=DSM 104648).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003725
2019-10-17
2019-11-14
Loading full text...

Full text loading...

References

  1. Nonomura H, Ohara Y. Distribution of actinomycetes in soil. II. Microbispora, a new genus of the Streptomycetaceae. J Ferment Technol 1957;35: 307– 311
    [Google Scholar]
  2. Han C, Tian Y, Zhao J, Yu Z, Jiang S et al. Microbispora triticiradicis sp. nov., a novel actinomycete isolated from the root of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2018;68: 3600– 3605 [CrossRef]
    [Google Scholar]
  3. Han C, Zhao J, Yu B, Shi H, Zhang C et al. Microbispora tritici sp. nov., a novel actinomycete isolated from a root of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2019;112: 1137 1145 [CrossRef]
    [Google Scholar]
  4. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci 2012;17: 478– 486 [CrossRef]
    [Google Scholar]
  5. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 2013;64: 807– 838 [CrossRef]
    [Google Scholar]
  6. Wang X, Zhao J, Liu C, Wang J, Shen Y et al. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 2013;63: 2418– 2423 [CrossRef]
    [Google Scholar]
  7. Atlas RM. Handbook of microbiological media In Parks LC. editor Microbiology Boca Raton: CRC Press; 1993
    [Google Scholar]
  8. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16: 313– 340 [CrossRef]
    [Google Scholar]
  9. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019;69: 688– 695 [CrossRef]
    [Google Scholar]
  10. Waksman SA. The Actinomycetes A summary of current knowledge, New York: Ronald; 1967
    [Google Scholar]
  11. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57: 141– 145
    [Google Scholar]
  12. Waksman SA. The Actinomycetes, vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  13. Kelly KL. Inter-society color council-national Bureau of standards color-name charts illustrated with centroid colors published in US. 1964
  14. Fu Y, Yan R, Liu D, Jiang S, Cui L et al. Trinickia diaoshuihuensis sp. nov., a plant growth promoting bacterium isolated from soil. Int J Syst Evol Microbiol 2019;69: 291– 296 [CrossRef]
    [Google Scholar]
  15. Smibert RM, Krieg NR. Phenotypic characterisation In Gerhardt P, R. G. E Murray, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  16. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974;24: 54– 63 [CrossRef]
    [Google Scholar]
  17. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993;43: 805– 812 [CrossRef]
    [Google Scholar]
  18. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30: 178– 182 [CrossRef]
    [Google Scholar]
  19. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publication6 Society of Industrial Microbiology; 1980; pp 227– 291
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  21. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp 267– 284
    [Google Scholar]
  22. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Int J Syst Evol Microbiol 1989;16: 176– 178
    [Google Scholar]
  23. Qu Z, Ruan JS, Hong K. Application of high performance liquid chromatography and gas chromatography in the identification of Actinomyces. Bio Bulletin 2009;s1: 79– 82
    [Google Scholar]
  24. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105: 307– 315 [CrossRef]
    [Google Scholar]
  25. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61: 1165– 1169 [CrossRef]
    [Google Scholar]
  26. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000;50: 2031– 2036 [CrossRef]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  33. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12: 133– 142 [CrossRef]
    [Google Scholar]
  34. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4: 184– 192 [CrossRef]
    [Google Scholar]
  35. Savi DC, Aluizio R, Galli-Terasawa L, Kava V, Glienke C. 16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora. Antonie van Leeuwenhoek 2016;109: 801– 815 [CrossRef]
    [Google Scholar]
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology. Report of the ad HOC Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Bacteriol 1987;37: 463– 464
    [Google Scholar]
  37. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20: 265– 272 [CrossRef]
    [Google Scholar]
  38. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008;24: 713– 714 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003725
Loading
/content/journal/ijsem/10.1099/ijsem.0.003725
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error