1887

Abstract

A Gram-negative, aerobic, non-flagellated and ovoid- or rod-shaped bacterium, designated strain SM1902, was isolated from the sediment sampled at the Jia River estuary, Yantai, PR China. The strain grew at 10–37 °C (optimum, 25–30 °C), pH 6.0–10.0 (pH 7.0) and with 0.5–13.0 % (w/v) NaCl (2.5%). It reduced nitrate to nitrite, but did not produce bacteriochlorophyll . The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1902 constituted a separated lineage within the family and was closely related to TG-679 and LMIT002 with 96.1 and 94.3 % 16S rRNA gene sequence similarities, respectively. The predominant cellular fatty acid was summed feature 8 (Cω7 and/or Cω6). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid and an unidentified lipid. The sole respiratory quinone was ubiquinone-10. The DNA–DNA hybridization values between strain SM1902 and TG-679 and LMIT002 were 19.6 and 19.5 %, respectively; and the average nucleotide identity values between them were 76.1 and 74.2 %, respectively. The genomic DNA G+C content of strain SM1902 was 58.2 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data obtained in this study, strain SM1902 is considered to represent a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is SM1902 (=KCTC 72045=MCCC 1K03596=CCTCC AB 2018346).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003722
2019-10-18
2019-11-18
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T, Family I. Rhodobacteraceae fam. nov In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology2, 2nd ed. Springer: New York; 2005; p 161
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Rhodobacteraceae fam. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 107. Int J Syst Evol Microbiol 2006;56: 1– 6
    [Google Scholar]
  3. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The Family Rhodobacteraceae In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes-Alphaproteobacteria and Betaproteobacteria8, 4th ed. Berlin: Springer; 2014; p 439
    [Google Scholar]
  4. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. Isme J 2017;11: 1483– 1499 [CrossRef]
    [Google Scholar]
  5. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68: 1825– 1829 [CrossRef]
    [Google Scholar]
  6. Ren Y, Chen C, Ye Y, Wang R, Han S et al. Meridianimarinicoccus roseus gen. nov., sp. nov., a novel genus of the family Rhodobacteraceae isolated from seawater. Int J Syst Evol Microbiol 2019;69: 504– 510 [CrossRef]
    [Google Scholar]
  7. Zhu J, Hong P, Wang S, Hu Z, Wang H. Phycocomes zhengii gen. nov., sp. nov., a marine bacterium of the family Rhodobacteraceae isolated from the phycosphere of Chlorella vulgaris. Int J Syst Evol Microbiol 2019;69: 535– 541 [CrossRef]
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp 115– 175
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef]
    [Google Scholar]
  15. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017;27: 768– 777 [CrossRef]
    [Google Scholar]
  16. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44: 6614– 6624 [CrossRef]
    [Google Scholar]
  17. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018;46: D851– D860 [CrossRef]
    [Google Scholar]
  18. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011;12: 124 [CrossRef]
    [Google Scholar]
  19. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef]
    [Google Scholar]
  20. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992;8: 275– 282 [CrossRef]
    [Google Scholar]
  21. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015;13: 321– 331 [CrossRef]
    [Google Scholar]
  22. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  26. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005;187: 6258– 6264 [CrossRef]
    [Google Scholar]
  27. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19: 161– 207
    [Google Scholar]
  28. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48: 459– 470 [CrossRef]
    [Google Scholar]
  29. Yi H, Lim YW, Chun J. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 2007;57: 815– 819 [CrossRef]
    [Google Scholar]
  30. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 21– 41
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp 607– 654
    [Google Scholar]
  32. Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Bacteriol 1998;48 Pt 2: 537– 542 [CrossRef]
    [Google Scholar]
  33. Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S et al. Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the beta-subclass of the Proteobacteria. Int J Syst Bacteriol 1999;49: 449– 457 [CrossRef]
    [Google Scholar]
  34. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ et al. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 2005;55: 2377– 2383 [CrossRef]
    [Google Scholar]
  35. Muramatsu Y, Uchino Y, Kasai H, Suzuki K-i, Nakagawa Y. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 2007;57: 1304– 1309 [CrossRef]
    [Google Scholar]
  36. Petursdottir SK, Kristjansson JK. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the blue lagoon geothermal lake in Iceland. Extremophiles 1997;1: 94– 99 [CrossRef]
    [Google Scholar]
  37. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998;44: 201– 210 [CrossRef]
    [Google Scholar]
  38. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003;53: 1261– 1269 [CrossRef]
    [Google Scholar]
  39. Oh KH, Jung YT, Oh TK, Yoon JH. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2011;61: 1182– 1188 [CrossRef]
    [Google Scholar]
  40. Huo Y-Y, Xu X-W, Li X, Liu C, Cui H-L et al. Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011;61: 347– 350 [CrossRef]
    [Google Scholar]
  41. Park S, Yoon J-H. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie Van Leeuwenhoek 2012;102: 581– 589 [CrossRef]
    [Google Scholar]
  42. Lee J, Whon TW, Shin N-R, Roh SW, Kim J et al. Ruegeria conchae sp. nov., isolated from the ark clam Scapharca broughtonii. Int J Syst Evol Microbiol 2012;62: 2851– 2857 [CrossRef]
    [Google Scholar]
  43. Kim YO, Park S, Nam BH, Kang SJ, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2012;62: 925– 930 [CrossRef]
    [Google Scholar]
  44. Kampfer P, Arun AB, Rekha PD, Busse H-J, Young C-C et al. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2013;63: 2538– 2544 [CrossRef]
    [Google Scholar]
  45. Lucena T, Ruvira MA, Macián MC, Pujalte MJ, Arahal DR. Description of Tropicibacter mediterraneus sp. nov. and Tropicibacter litoreus sp. nov. Syst Appl Microbiol 2013;36: 325– 329 [CrossRef]
    [Google Scholar]
  46. Kim Y-O, Park S, Nam B-H, Jung Y-T, Kim D-G et al. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie Van Leeuwenhoek 2014;105: 551– 558 [CrossRef]
    [Google Scholar]
  47. Zhang G, Haroon MF, Zhang R, Dong X, Wang D et al. Ruegeria profundi sp. nov. and Ruegeria marisrubri sp. nov., isolated from the brine–seawater interface at Erba deep in the red sea. Int J Syst Evol Microbiol 2017;67: 4624– 4631 [CrossRef]
    [Google Scholar]
  48. Arahal DR, Lucena T, Rodrigo-Torres L, Pujalte MJ. Ruegeria denitrificans sp. nov., a marine bacterium in the family Rhodobacteraceae with the potential ability for cyanophycin synthesis. Int J Syst Evol Microbiol 2018;68: 2515– 2522 [CrossRef]
    [Google Scholar]
  49. Zhang L, Wang KL, Yin Q, Liang JY, Xu Y. Ruegeria kandeliae sp. nov., isolated from the rhizosphere soil of a mangrove plant Kandelia candel. Int J Syst Evol Microbiol 2018;68: 2653– 2658 [CrossRef]
    [Google Scholar]
  50. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018;68: 2393– 2411 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003722
Loading
/content/journal/ijsem/10.1099/ijsem.0.003722
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error