1887

Abstract

Three actinobacterial strains, 27D-LEPI, 1B-Mac and 36A-HELLB, were isolated from small standing and running freshwater habitats located in Salzburg, Austria. Phylogenetic reconstructions based on 16S rRNA gene sequences and genome based on concatenated amino acid sequences of 119 single-copy genes referred the three strains within the family to the genus . The strains showed 100 % 16S rRNA gene sequence similarities to the previously described Rhodoluna limnophila. Cells were very small, approximately 0.5×0.3 µm, and showed a red pigmentation in liquid nutrient broth–soyotone–yeast extract medium as well as on agar plates. The strains assimilated a broad variety of substrates; however, the patterns differed a great deal between the three investigated strains. For strain 27D-LEPI, the major fatty acids were iso-C and anteiso-C; the identified polar lipids were phosphatidylglycerol and diphosphatidylglycerol; the major respiratory quinone was MK-11; and analysis of the peptidoglycan structure indicated the presence of type B2β (typeB10). The genomic DNA of the three strains was very small (1.4 Mbp) and had a DNA G+C content of 54 mol%. The investigated traits suggested that strains 36A-HELLB (=DSM 107805=JCM 32927), 1B-Mac (=DSM 107802=JCM 32925) and 27D-LEPI (=JCM 32926 =DSM 107804) represent a new species for which the name sp. nov. is proposed, with strain 27D-LEPI as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003720
2019-09-19
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.003720/ijsem003720.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003720&mimeType=html&fmt=ahah

References

  1. Evtushenko LI. Microbacteriaceae. In Whitman WB. (editor) Bergey's Manual of Systematics of Archaea and Bacteria Hoboken, New Jersey: Wiley; 2015; pp.807 ff
    [Google Scholar]
  2. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018;9:119 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019;47:D666–D677 [CrossRef][PubMed]
    [Google Scholar]
  5. Hahn MW. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 2009;59:112–117 [CrossRef][PubMed]
    [Google Scholar]
  6. Hahn MW, Schmidt J, Taipale SJ, Doolittle WF, Koll U. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol 2014;64:3254–3263 [CrossRef][PubMed]
    [Google Scholar]
  7. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004;57:379–390 [CrossRef][PubMed]
    [Google Scholar]
  8. Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH. In situ probing of gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 1994;140:2849–2858 [CrossRef][PubMed]
    [Google Scholar]
  9. Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S et al. Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 2017;67:2555–2568 [CrossRef][PubMed]
    [Google Scholar]
  10. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:16
    [Google Scholar]
  11. Tindall BJ. A Comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  12. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  13. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  14. Schumann P. Peptidoglycan Structure. Methods Microbiol 2011;38:101–129
    [Google Scholar]
  15. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell-walls and their taxonomic implications. Bacteriological Reviews 1972;36:407–477
    [Google Scholar]
  16. Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species Is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol 2017;83:19 [CrossRef][PubMed]
    [Google Scholar]
  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  18. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36:996–1004 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  21. Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005;33:511–518 [CrossRef][PubMed]
    [Google Scholar]
  22. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  23. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE) New Orleans, LA: IEEE; 2010; pp.1–8
    [Google Scholar]
  25. Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park HD et al. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol 2012;14:2511–2525 [CrossRef][PubMed]
    [Google Scholar]
  26. Beier S, Witzel KP, Marxsen J. Bacterial community composition in central european running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 2008;74:188–199 [CrossRef][PubMed]
    [Google Scholar]
  27. Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC et al. It's all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 2008;10:2200–2210 [CrossRef][PubMed]
    [Google Scholar]
  28. Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP et al. brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J Biol Chem 2001;276:5739–5744 [CrossRef][PubMed]
    [Google Scholar]
  29. Keffer JL, Hahn MW, Maresca JA. Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola. J Bacteriol 2015;197:2704–2712 [CrossRef][PubMed]
    [Google Scholar]
  30. Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 2014;1837:1178–1187 [CrossRef][PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  32. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  33. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006;361:1929–1940 [CrossRef][PubMed]
    [Google Scholar]
  34. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015;38:209–216 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003720
Loading
/content/journal/ijsem/10.1099/ijsem.0.003720
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error