1887

Abstract

A Gram-stain-negative, rod shaped, non-motile, aerobic bacterium (strain JC507) was isolated from a yeast ( JY101). Strain JC507 was oxidase- and catalase-positive. Complete 16S rRNA gene sequence comparison data indicated that strain JC507 was a member of the genus and was closely related to NBRC 14944 (98.7 %), followed by CC-VM-7 (98.6 %), ATCC 35910 (98.5 %) and less than 98.5 % to other species of the genus The genomic DNA GC content of strain JC507 was 36.0 mol%. Strain JC507 had phosphatidylethanolamine, four unidentified amino lipids and four unidentified lipids. MK-6 was the only respiratory quinone. The major fatty acids (>10 %) were anteiso-C, iso-C and iso-C3OH. The average nucleotide identity and DNA–DNA hybridization values between strain JC507 and NBRC 14944, CC-VM-7 and ATCC 35910 were 80.2, 83.0 and 87.0 % and 24, 26.7 and 32.7 %, respectively. The results of phenotypic, phylogenetic and chemotaxonomic analyses support the inclusion of strain JC507 as a representative of a new species of the genus for which the name sp. nov. is proposed. The type strain is JC507 (=KCTC 52928=MCC 4072=NBRC 113872).

Keyword(s): Chryseobacterium
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003716
2019-09-18
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/93.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003716&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. Notes: new perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Holmes B, Steigerwalt AG, Nicholson AC. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013; 63:4639–4662 [View Article]
    [Google Scholar]
  3. Loch TP, Faisal M. Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2014; 64:1573–1579 [View Article]
    [Google Scholar]
  4. Kirk KE, Hoffman JA, Smith KA, Strahan BL, Failor KC et al. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 2013; 63:4777–4783 [View Article]
    [Google Scholar]
  5. Sang MK, Kim H-S, Myung I-S, Ryu C-M, Kim BS et al. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 2013; 63:2835–2840 [View Article]
    [Google Scholar]
  6. Venil CK, Nordin N, Zakaria ZA, Ahmad WA. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer . Int J Syst Evol Microbiol 2014; 64:3153–3159 [View Article]
    [Google Scholar]
  7. Wt I, Yang JE, Kim SY, Th Y. Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. Int J Syst Evol Microbiol 2011; 61:1430–1435
    [Google Scholar]
  8. de Beer H et al. Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 2005; 55:2149–2153 [View Article]
    [Google Scholar]
  9. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003; 53:93–97 [View Article][PubMed]
    [Google Scholar]
  10. Divyasree B, Suresh G, Sasikala C, Ramana CV. Chryseobacterium salipaludis sp. nov., isolated at a wild ass sanctuary. Int J Syst Evol Microbiol 2018; 68:542–546 [View Article][PubMed]
    [Google Scholar]
  11. Luo T, Liu Y, Chen C, Luo Q, Rao Q et al. Chryseobacterium aurantiacum sp nov. Int J Syst Evol Microbiol 2018; 68:3397–3403
    [Google Scholar]
  12. Jeong J-J, Sang MK, Lee DW, Choi I-G, Kim KD. Chryseobacterium phosphatilyticum sp. nov., a phosphate-solubilizing endophyte isolated from cucumber (Cucumis sativus L.) root. Int J Syst Evol Microbiol 2019; 69:610–615 [View Article]
    [Google Scholar]
  13. Pal M, Kumari M, Kiran S, Salwan R, Mayilraj S et al. Chryseobacterium glaciei sp. nov., isolated from the surface of a glacier in the Indian trans-Himalayas. Int J Syst Evol Microbiol 2018; 68:865–870 [View Article]
    [Google Scholar]
  14. Bortniak VL, Pelletier DA, Newman JD. Chryseobacterium populi sp. nov., isolated from Populus deltoides endosphere. Int J Syst Evol Microbiol 2019; 69:356–362 [View Article]
    [Google Scholar]
  15. Bernardet J-F, Hugo C, Bruun B. The genera Chryseobacterium and Elizabethkingia . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed. vol. 7 New York: Springer; 2006 pp. 638–676
    [Google Scholar]
  16. Bernardet J-F, Hugo C. Genus VII. Chryseobacterium vandamme . In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 Baltimore: Williams & Wilkins; 2011196
    [Google Scholar]
  17. Jeong J-J, Lee DW, Park B, Sang MK, Choi I-G et al. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae . Int J Syst Evol Microbiol 2017; 67:610–616 [View Article]
    [Google Scholar]
  18. Salmanian ALI-H, Siavoshi F, Beyrami Z, Latifi-Navid S, Tavakolian A et al. Foodborne yeasts serve as reservoirs of Helicobacter pylori. J Food Safety 2012; 32:152–160 [View Article]
    [Google Scholar]
  19. Siavoshi F, Saniee P. Vacuoles of Candida yeast as a specialized niche for Helicobacter pylori . World J Gastroenterol 2014; 20:5263–5273 [View Article]
    [Google Scholar]
  20. Alipour N, Gaeini N. Helicobacter is preserved in yeast vacuoles! Does Koch's postulates confirm it?. World Journal Gastroenterol 2017; 23:2266–2268 [View Article]
    [Google Scholar]
  21. Kluge M. A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Biology & Environment: Proceedings of the Royal Irish Academy 2002; 102:11–14 [View Article]
    [Google Scholar]
  22. Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 2005; 437:884888 [View Article]
    [Google Scholar]
  23. Subhash Y, Sasikala C, Ramana C. Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. Int J Syst Evol Microbiol 2013; 63:3463–3469 [View Article][PubMed]
    [Google Scholar]
  24. Subhash Y, Tushar L, Sasikala C, Ramana C. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013; 63:4524–4532 [View Article][PubMed]
    [Google Scholar]
  25. Yoon SH, Sm H, Kwon S, Lim JM, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  26. Yoon S-H, Ha S-Min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  29. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea . Syst Appl Microbiol 2015; 38:209–216 [View Article]
    [Google Scholar]
  30. Tamura S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  32. Kampfer P, Arun AB, Young C-C, Chen W-M, Sridhar KR et al. Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2010; 60:1765–1769 [View Article]
    [Google Scholar]
  33. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. Notes: New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  34. Nguyen N-L, Kim Y-J, Hoang VA, Yang D-C. Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum . Int J Syst Evol Microbiol 2013; 63:2975–2980 [View Article]
    [Google Scholar]
  35. Montero-Calasanz Mdelc, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense . Syst Appl Microbiol 2014; 37:342–350 [View Article]
    [Google Scholar]
  36. Zamora L, Vela AI, Palacios MA, Sanchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012; 62:2934–2940 [View Article]
    [Google Scholar]
  37. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  38. Lakshmi KV, Sasikala C, Ashok Kumar GV, Chandrasekaran R, Ramana C. Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 2011; 61:828–833 [View Article][PubMed]
    [Google Scholar]
  39. Venil CK, Zakaria ZA, Usha R, Ahmad WA. Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal Agric Biotechnol 2014; 3:103–107 [View Article]
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  41. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Burdon RH, van Knippenberg PH. (editors) Laboratory Techniques in Biochemistry and Molecular Biology vol. 3, part 2, Amsterdam: Elsevier; 1986 pp. 100–112
    [Google Scholar]
  42. Oren A, Duker S, Ritter S. The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  43. Kates M. Techniques of lipidology. Isolation, analysis and identification of lipids. In Burdon RH, van Knippenberg PH. (editors) Laboratory Techniques in Biochemistry and Molecular Biology vol. 3, part 2 Amsterdam: Elsevier; 1986 pp. 100–112
    [Google Scholar]
  44. Xie C-H, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article]
    [Google Scholar]
  45. Mujahid M, Sasikala C, Ramana C. Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Curr Microbiol 2010; 61:285–290 [View Article][PubMed]
    [Google Scholar]
  46. Mollan RC, Harmey MA, Donnelly DMX. UV spectra of indoles in strong sulphuric acid. Phytochemistry 1973; 12:447–450 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003716
Loading
/content/journal/ijsem/10.1099/ijsem.0.003716
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error