1887

Abstract

Two Gram-stain-positive, motile, endospore-forming, aerobic strains, designated V44-8 and V47-23a, were isolated from environmental air sampling at the vehicle assembly building at Cape Canaveral, Florida, where the Viking spacecraft were assembled. Growth was observed at pH 7–9 (optimum, pH 9) for strain V44-8, and pH 5–10 (pH 9) for strain V47-23a. Both strains displayed growth in 0–5 % NaCl with an optimum at 1 % for strain V44-8; 0 % for strain V47-23a. Strains V44-8 and V47-23a grew optimally at 32 °C, (15–32 °C) and 25 °C (20–45 °C), respectively. The cell wall of both strains contained meso-diaminopimelic acid as the diagnostic diamino acid. Both strains contained phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. The predominant cellular fatty acids were anteiso-C, iso-C and iso-C. Strain V47.23a shared its highest 16S rRNA sequence similarity with DSM-105484 at 96.9%, and V44.8 with DSM-103964 at 96.6 %. Based on their phenotypic characteristics and phylogenetic position inferred from 16S rRNA gene sequence analyses, the isolates were identified as being a members of the genus that forms a separate clade when compared to close relatives. Average nucleotide identity and average amino acid identity values between strains V44-8 and DSM-103964 were 72.1% and 67.5 %; V47-23a and DSM-105484 were 62.4% and 69.1%, respectively. Based on the phenotypic, genomic and biochemical data, strains V44-8 and V47-23a represent two novel species in the genus for which the names sp. nov. [type strain, V44-8 (=ATCC BAA-2860 =DSM 105192)], and sp. nov. [V47-23a (=ATCC BAA-2861=DSM 105190)] are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003714
2020-02-03
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/1/71.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003714&mimeType=html&fmt=ahah

References

  1. Benardini JN, La Duc MT, Beaudet RA, Koukol R. Implementing planetary protection measures on the Mars science laboratory. Astrobiology 2014; 14:27–32 [View Article]
    [Google Scholar]
  2. Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W et al. Development of a custom MALDI-TOF MS database for species-level identification of bacterial isolates collected from spacecraft and associated surfaces. Front Microbiol 2018; 9:780 [View Article]
    [Google Scholar]
  3. Duc MTL, La Duc MT, Satomi M, Venkateswaran K. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol 2004; 54:195–201 [View Article]
    [Google Scholar]
  4. Osman S, Satomi M, Venkateswaran K. Paenibacillus pasadenensis sp. nov. and Paenibacillus barengoltzii sp. nov., isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 2006; 56:1509–1514 [View Article]
    [Google Scholar]
  5. Satomi M, La Duc MT, Venkateswaran K. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 2006; 56:1735–1740 [View Article]
    [Google Scholar]
  6. Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C et al. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 2013; 63:2463–2471 [View Article]
    [Google Scholar]
  7. Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S et al. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 2010; 60:1031–1037 [View Article]
    [Google Scholar]
  8. Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A et al. Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol 2009; 59:1094–1099 [View Article]
    [Google Scholar]
  9. Benardini JN, Vaishampayan PA, Schwendner P, Swanner E, Fukui Y et al. Paenibacillus phoenicis sp. nov., isolated from the phoenix lander assembly facility and a subsurface molybdenum mine. Int J Syst Evol Microbiol 2011; 61:1338–1343 [View Article]
    [Google Scholar]
  10. Puleo JR, Bergstrom SL, Peeler JT, Oxborrow GS. Thermal resistance of naturally occurring airborne bacterial spores. Appl Environ Microbiol 1978; 36:473–479
    [Google Scholar]
  11. Puleo JR, Fields ND, Bergstrom SL, Oxborrow GS, Stabekis PD et al. Microbiological profiles of the Viking spacecraft. Appl Environ Microbiol 1977; 33:379–384
    [Google Scholar]
  12. Slepecky RA, Hemphill HE. The Genus Bacillus—Nonmedical. The Prokaryotes 2006530–562
    [Google Scholar]
  13. Nazina TN, Tourova TP, Poltaraus AB, Novikova E V, Grigoryan AA et al. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans . Int J Syst Evol Microbiol 2001; 51:433–446
    [Google Scholar]
  14. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 1998; 171:19–30 [View Article]
    [Google Scholar]
  15. Sandle T. A review of Cleanroom microflora: types, trends, and patterns. PDA J Pharm Sci Technol 2011; 65:392–403 [View Article]
    [Google Scholar]
  16. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T et al. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 2009; 4:1373–1382
    [Google Scholar]
  17. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article]
    [Google Scholar]
  18. Hucker GJ, Conn HJ. Methods of gram staining. Tech Bull New York State Agric Exp Stn 1923; 93:
    [Google Scholar]
  19. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580
    [Google Scholar]
  20. Cliff JB, Jarman KH, Valentine NB, Golledge SL, Gaspar DJ et al. Differentiation of spores of Bacillus subtilis grown in different media by elemental characterization using time-of-flight secondary ion mass spectrometry. Appl Environ Microbiol 2005; 71:6524–6530 [View Article]
    [Google Scholar]
  21. Xu P et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  22. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  23. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of Actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Evol Microbiol 2002; 46:234–239
    [Google Scholar]
  24. Den Kamp JA, Redai I, Van Deenen LL. Phospholipid composition of Bacillus subtilis . J Bacteriol 1969; 99:298–303
    [Google Scholar]
  25. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  27. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008; 24:311–320
    [Google Scholar]
  28. Seuylemezian A, Cooper K, Schubert W, Vaishampayan P. Draft genome sequences of 12 dry-heat-resistant Bacillus strains isolated from the cleanrooms where the viking spacecraft were assembled. Genome Announc 2018; 6:12 [View Article]
    [Google Scholar]
  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  31. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  32. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  33. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  34. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 1878; 2005:6258–6264
    [Google Scholar]
  35. Kim M, HS O, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 1825; 2014:64
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003714
Loading
/content/journal/ijsem/10.1099/ijsem.0.003714
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error