1887

Abstract

Strain TE3, an endophytic plant growth promoting bacterium, was isolated from wheat ( subsp. ) sampled in the Yaqui Valley, Mexico. Biochemical, phenotypic and genotypic approaches were used to clarify the taxonomic affiliation of this strain. Based on analysis of its full-length 16S rRNA gene, strain TE3 was assigned to the genus (similarity ≥98.7 %). This finding was supported by morphological and metabolic characteristics, such as rod shape, strictly aerobic metabolism, spore formation, Gram-positive staining, catalase-positive activity, reduction of nitrate to nitrite, starch and casein hydrolysis, growth in presence of lysozyme and 2 % NaCl, citrate utilization, growth pH from 6.0 to 8.0, and acid and indole production from glucose and tryptophan, respectively. The whole-genome phylogenetic relationship showed that TE3 formed an individual clade with KCTC 13622, distant from that generated by all subspecies. The maximum values for average nucleotide identity and DNA–DNA hybridization were 93.85 and 54.30 %, respectively, related to subsp. KCTC 13429. Analysis of its fatty acid content showed the ability of strain TE3 to bio-synthetize fatty acids that are not present in closely related species, such as C, C 2OH, C 3OH, C, iso-C 3OH and Cω9. These results provide evidence that strain TE3 is a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is TE3 (CM-CNRG TB54=CCStamb A1).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003711
2019-09-17
2019-10-15
Loading full text...

Full text loading...

References

  1. Cohn F. Untersuchungen über Bakterien. Beitr Biol Pflanzen 1872;1:127–224
    [Google Scholar]
  2. Tidjani Alou M, Rathored J, Traore SI, Khelaifia S, Michelle C et al. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut. New Microbes New Infect 2015;8:61–69 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  4. Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L et al. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 2010;11:332 [CrossRef][PubMed]
    [Google Scholar]
  5. Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 2018;124:1334–1346 [CrossRef][PubMed]
    [Google Scholar]
  6. Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 2009;59:2429–2436 [CrossRef][PubMed]
    [Google Scholar]
  7. Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotec Eq 2017;31:446–459 [CrossRef]
    [Google Scholar]
  8. Zeigler DR, Nicholson WL. Experimental evolution of Bacillus subtilis. Environ Microbiol 2017;19:3415–3422 [CrossRef][PubMed]
    [Google Scholar]
  9. Villarreal-Delgado M, Villa-Rodríguez E, Cira-Chávez L, Estrada-Alvarado M, Parra-Cota F et al. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Rev Mex Fitopatol 2018;36:95–130
    [Google Scholar]
  10. Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ et al. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 2014;27:655–663 [CrossRef][PubMed]
    [Google Scholar]
  11. Adelskov J, Patel BKC. Erratum to: A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech 2017;7:1–16 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhang K, Su L, Duan X, Liu L, Wu J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb Cell Fact 2017;16:1–15 [CrossRef][PubMed]
    [Google Scholar]
  13. Garcia-Marengoni N, de Moura MC, Tavares N, de Oliveira E, Bombardelli RA et al. Use of probiotics Bacillus cereus var. toyoi and Bacillus subtilis C-3102 in the diet of juvenile Nile tilapia cultured in cages. Lat Am J Aquat Res 2015;43:601–606
    [Google Scholar]
  14. Earl AM, Losick R, Kolter R. Bacillus subtilis genome diversity. J Bacteriol 2007;189:1163–1170 [CrossRef][PubMed]
    [Google Scholar]
  15. Nijland R, Burgess JG, Errington J, Veening JW. Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PLoS One 2010;5:e97249727 [CrossRef]
    [Google Scholar]
  16. Juhas M, Reuß DR, Zhu B, Commichau FM. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology 2014;160:2341–2351 [CrossRef][PubMed]
    [Google Scholar]
  17. Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO et al. Genetic competence drives genome diversity in Bacillus subtilis. Genome Biol Evol 2018;10:108–124https://doi.org/ [CrossRef][PubMed]
    [Google Scholar]
  18. Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep 2014;6:212–225 [CrossRef][PubMed]
    [Google Scholar]
  19. Nakamura LK, Roberts MS, Cohan FM. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 1999;49:1211–1215 [CrossRef][PubMed]
    [Google Scholar]
  20. Valenzuela-Aragon B, Parra-Cota FI, Santoyo G, Arellano-Wattenbarger GL, de Los Santos-Villalobos S. Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant Soil 2019;435:367–384 [CrossRef]
    [Google Scholar]
  21. de Los Santos-Villalobos S, Parra-Cota F, Herrera-Sepúlveda A, Valenzuela Aragón B, Estrada-Mora J. Colección de microorganismos edáficos y endófitos nativos para contribuirá la seguridad alimentaria nacional. Rev Mexicana Cien Agric 2018;9:191–202
    [Google Scholar]
  22. Villa-Rodríguez E, Parra-Cota F, Castro-Longoria E, López-Cervantes J, de Los Santos-Villalobos S. Bacillus subtilis TE3: A promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control 2019;132:135–143 [CrossRef]
    [Google Scholar]
  23. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD et al. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009;25:2071–2073 [CrossRef][PubMed]
    [Google Scholar]
  24. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75–15 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  27. Wang LT, Lee FL, Tai CJ, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 2007;57:1846–1850 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu Y, du J, Lai Q, Zeng R, Ye D et al. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 2017;67:2499–2508 [CrossRef][PubMed]
    [Google Scholar]
  29. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014;31:1077–1088 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  33. Sentausa E, Fournier PE. Advantages and limitations of genomics in prokaryotic taxonomy. Clin Microbiol Infect 2013;19:790–795 [CrossRef][PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  35. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  36. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  37. Espariz M, Zuljan FA, Esteban L, Magni C. Taxonomic identity resolution of highly phylogenetically related strains and selection of phylogenetic markers by using genome-scale methods: The Bacillus pumilus group case. PLoS One 2016;11:e016309817 [CrossRef][PubMed]
    [Google Scholar]
  38. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio 2014;5:1–13 [CrossRef][PubMed]
    [Google Scholar]
  39. Brenner D, Krieg NR, Staley JT, Garrity GM. Bergey’s Manual of Systematic Bacteriology (Springer-Verlag, Ed) New York: Bergey’s Manual of Systematic Bacteriology; 2005
    [Google Scholar]
  40. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  41. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010;http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  42. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  43. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003711
Loading
/content/journal/ijsem/10.1099/ijsem.0.003711
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error