sp. nov., isolated from surface-sterilized tissue of L. Free

Abstract

A Gram-stain-positive, rod-shaped, aerobic, endospore-forming bacterium, designated strain N2SHLJ1, was isolated from a surface-sterilized tissue sample of L. in Guizhou, PR China. To determine the bacterium’s taxonomic position, it was characterized by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequencing suggested that strain N2SHLJ1 belongs to the genus and is most closely to CJ25 (94.7 % similarity). Strain N2SHLJ1 grew at 10–37 °C (optimum, 30 °C), in 0–2 % (w/v) NaCl (optimum, 0 %) and in pH 5.0–8.0 (optimum, 7.0). The cell-wall peptidoglycan contained -diaminopimelic acid and the predominant menaquinone was MK-7. The major fatty acids were anteiso-C and iso-C. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified phospholipid, an unidentified aminolipid, an unidentified glycolipid and two unidentified lipids. The DNA G+C content was 50.8 mol%. Based on the results of phylogenetic, phenotypic and chemotaxonomic analysis, strain N2SHLJ1 was clearly distinguished from other species with validly published names in the genus and should therefore be designated as a novel species, for which the name sp. nov. is proposed. The type strain is N2SHLJ1 (=JCM 33293=CGMCC 1.13865).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003699
2019-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/12/3878.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003699&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260[PubMed]
    [Google Scholar]
  2. Menéndez E, Flores-Félix JD, Mulas R, Andrés FG, Fernández-Pascual M et al. Paenibacillus tritici sp. nov., isolated from wheat roots. Int J Syst Evol Microbiol 2017; 67:2312–2316 [View Article][PubMed]
    [Google Scholar]
  3. Zhang J, Ma XT, Gao JS, Zhao JJ, Yin HQ et al. Paenibacillusoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:5000–5004 [View Article][PubMed]
    [Google Scholar]
  4. Siddiqi MZ, Siddiqi MH, Im WT, Kim YJ, Yang DC. Paenibacillus kyungheensis sp. nov., isolated from flowers of magnolia. Int J Syst Evol Microbiol 2015; 65:3959–3964 [View Article][PubMed]
    [Google Scholar]
  5. Liu Y, Liu L, Qiu F, Schumann P, Shi Y et al. Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2010; 60:1266–1270 [View Article][PubMed]
    [Google Scholar]
  6. Smerda J, Sedlácek I, Pácová Z, Durnová E, Smísková A et al. Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 2005; 55:2351–2354 [View Article][PubMed]
    [Google Scholar]
  7. Madhaiyan M, Poonguzhali S, Saravanan VS, Duraipandiyan V, Al-Dhabi NA et al. Paenibacillus polysaccharolyticus sp. nov., a xylanolytic and cellulolytic bacteria isolated from leaves of Bamboo Phyllostachys aureosulcata . Int J Syst Evol Microbiol 2017; 67:2127–2133 [View Article][PubMed]
    [Google Scholar]
  8. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008; 58:2525–2528 [View Article][PubMed]
    [Google Scholar]
  9. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  17. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  18. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  19. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  20. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  21. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  22. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  23. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  26. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  28. Tuo L, Yan XR, Li FN, Yang C, An MB et al. Amnibacterium flavum sp. nov., a novel endophytic actinobacterium isolated from bark of Nerium indicum Mill. Int J Syst Evol Microbiol 2019; 69:285–290 [View Article][PubMed]
    [Google Scholar]
  29. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  30. De Vos P, Ludwig WF, Schleifer KH, Whitman I. Family IV. Paenibacillaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology vol. 3 2011 pp. 269
    [Google Scholar]
  31. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1284–1288 [View Article][PubMed]
    [Google Scholar]
  32. Bae JY, Kim KY, Kim JH, Lee K, Cho JC et al. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2010; 60:644–647 [View Article][PubMed]
    [Google Scholar]
  33. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 2011; 61:160–164 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003699
Loading
/content/journal/ijsem/10.1099/ijsem.0.003699
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed