gen. nov., sp. nov., a member of a novel lineage ( fam. nov.) within the order of isolated from Antarctic lichen Free

Abstract

Two Gram-stain-negative, facultative anaerobic chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 29128 and PAMC 29148, were isolated from lichen. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strains PAMC 29128 and PAMC 29148 belong to lichen-associated -1 (LAR1), an uncultured phylogenetic lineage of the order and the most closely related genera were (<93.9 %) and (<93.8 %). The results of phylogenomic and genomic relatedness analyses also showed that strains PAMC 29128 and PAMC 29148 were clearly distinguished from other species in the order with average nucleotide identity values of <71.4 % and genome-to-genome distance values of <22.7 %. Genomic analysis revealed that strains PAMC 29128 and PAMC 29148 did not contain genes involved in atmospheric nitrogen fixation or utilization of carbon compounds such as methane and methanol. Strains PAMC 29128 and PAMC 29148 were able to utilize certain monosaccharides, disaccharides, sugar alcohols and other organic compounds as a sole carbon source. The major fatty acids (>10 %) were summed feature 8 (C ω7 and/or C ω6; 33.7–39.7 %), summed feature 3 (C ω7 and/or C ω; 25.2–25.4 %) and C cyclo ω8 (11.9–15.4 %). The major respiratory quinone was Q-10. The genomic DNA G+C contents of PAMC 29128 and PAMC 29148 were 63.0 and 63.1 mol%, respectively. Their distinct phylogenetic position and some physiological characteristics support the proposal of gen. nov., with the type species sp. nov. (type strain, PAMC 29148=KCCM 43293=JCM 33311). fam. nov. is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003695
2019-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/12/3837.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003695&mimeType=html&fmt=ahah

References

  1. Grube M, Berg G. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 2009; 23:72–85 [View Article]
    [Google Scholar]
  2. Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 2012; 14:147–161 [View Article][PubMed]
    [Google Scholar]
  3. Lee YM, Kim EH, Lee HK, Hong SG. Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. World J Microbiol Biotechnol 2014; 30:2711–2721 [View Article][PubMed]
    [Google Scholar]
  4. Printzen C, Fernández-Mendoza F, Muggia L, Berg G, Grube M. Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeata . FEMS Microbiol Ecol 2012; 82:316–325 [View Article][PubMed]
    [Google Scholar]
  5. Cardinale M, Grube M, Castro JV, Müller H, Berg G. Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. FEMS Microbiol Lett 2012; 329:111–115 [View Article][PubMed]
    [Google Scholar]
  6. Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 2011; 77:1309–1314 [View Article][PubMed]
    [Google Scholar]
  7. Hodkinson BP, Lutzoni F. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales . Symbiosis 2009; 49:163–180 [View Article]
    [Google Scholar]
  8. Park CH, Kim KM, Kim O-S, Jeong G, Hong SG. Bacterial communities in Antarctic lichens. Antarct Sci 2016; 28:455–461 [View Article]
    [Google Scholar]
  9. Cardinale M, Puglia AM, Grube M. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 2006; 57:484–495 [View Article][PubMed]
    [Google Scholar]
  10. Jiang D-F, Wang H-Y, Si H-L, Zhao L, Liu C-P et al. Isolation and culture of lichen bacteriobionts. Lichenologist 2017; 49:175–181 [View Article]
    [Google Scholar]
  11. Liba CM, Ferrara FI, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC et al. Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 2006; 101:1076–1086 [View Article][PubMed]
    [Google Scholar]
  12. Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M et al. Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 2010; 33:71–83 [View Article]
    [Google Scholar]
  13. Park CH, Hong SG, Elvebakk A. Psoroma antarcticum, a new lichen species from Antarctica and neighbouring areas. Polar Biol 2018; 41:1083–1090 [View Article]
    [Google Scholar]
  14. Lane D. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991 pp. 115–175
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613 [View Article][PubMed]
    [Google Scholar]
  16. Jeon YS, Chung H, Park S, Hur I, Lee JH et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  20. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 2000; 28:231–234 [View Article][PubMed]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  22. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article][PubMed]
    [Google Scholar]
  23. Moriya Y, Itoh M, Okuda S, Kanehisa M. KAAS: KEGG automatic annotation server. Genome Informatics 2005; 5:2005
    [Google Scholar]
  24. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26:2460–2461 [View Article][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  26. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  28. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article][PubMed]
    [Google Scholar]
  29. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article][PubMed]
    [Google Scholar]
  30. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  31. Kersters K, de Vos P, Gillis M, Swings J, Vandamme P et al. Introduction to the Proteobacteria. The prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses 2006 pp. 3–37
    [Google Scholar]
  32. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME) Newark, NY: Microbial ID; 2006
    [Google Scholar]
  33. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316[PubMed]
    [Google Scholar]
  34. Dedysh SN, Didriksen A, Danilova OV, Belova SE, Liebner S et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subarctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 2015; 65:3618–3624 [View Article][PubMed]
    [Google Scholar]
  35. Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD et al. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 2002; 52:251–261 [View Article][PubMed]
    [Google Scholar]
  36. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN. Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 2003; 53:1231–1239 [View Article][PubMed]
    [Google Scholar]
  37. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W et al. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 2011; 61:2456–2463 [View Article][PubMed]
    [Google Scholar]
  38. Kennedy C. Beijerinckia Derx 1950a, 145AL . Bergey’s Manual® of Systematic Bacteriology 2005 pp. 423–432
    [Google Scholar]
  39. Pfennig N. Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 1969; 99:597–602[PubMed]
    [Google Scholar]
  40. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I Methanotrophs . Int J Syst Bacteriol 1993; 43:735–753 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003695
Loading
/content/journal/ijsem/10.1099/ijsem.0.003695
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed