1887

Abstract

Strain KUDC5002 was isolated from soil sampled on the Dokdo Islands, Republic of Korea. This bacterial strain was Gram stain-positive, non-motile, rod-shaped, capable of growing at 25–37°C and pH 5.0–12.0, and showed optimal growth at 30 °C and pH 7.0–8.0. Strain KUDC5002 could be grown in tryptic soy broth containing less than 7.0 % NaCl (w/v). The cell width ranged from 0.5 to 0.6 µm and length ranged from 0.8 to 1.0 µm. Strain KUDC5002 was catalase- and oxidase-positive. Its genomic G+C content was 72.2 mol%. Its major fatty acids were C 9 (17.3 %), iso-C (16.0 %) and iso-C (11.4 %). Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain KUDC5002 belongs to the genus and is most closely related to strain DCY24 (97.0 %). Based on its phenotypic, phylogenetic, genetic and chemotaxonomic features, strain KUDC5002 should be considered a novel species in the genus , for which we have proposed the name sp. nov. The type strain is KUDC5002 (=KCTC 39855=DSM 106604).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003689
2019-09-12
2020-01-27
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  2. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976;26:58–65 [CrossRef]
    [Google Scholar]
  3. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef]
    [Google Scholar]
  4. Lin SY, Wen CZ, Hameed A, Liu YC, Hsu YH et al. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015;65:1953–1958 [CrossRef][PubMed]
    [Google Scholar]
  5. O'Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O'Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 1982;133:323–329 [CrossRef]
    [Google Scholar]
  6. Yoon J-H, Cho Y-G, Lee ST, Suzuki K-I, Nakase T et al. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol 1999;49:675–680 [CrossRef]
    [Google Scholar]
  7. Yoon J-H, Kim IG, Kang KH, Tk O, Park YH. Nocardioides aquiterrae sp. nov., isolated from groundwater in Korea. Int J Syst Evol Microbiol 2004;54:71–75 [CrossRef]
    [Google Scholar]
  8. Yoon J-H, Kim IG, Lee MH, Lee CH, Tk O. Nocardioides alkalitolerans sp. nov., isolated from an alkaline serpentinite soil in Korea. Int J Syst Evol Microbiol 2005;55:809–814 [CrossRef]
    [Google Scholar]
  9. Yoon J-H, Kim IG, Lee MH, Tk O. Nocardioides kribbensis sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 2005;55:1611–1614 [CrossRef]
    [Google Scholar]
  10. Yoon J-H, Lee CH, Tk O. Nocardioides lentus sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 2006;56:271–275 [CrossRef]
    [Google Scholar]
  11. Dastager SG, Lee J-C, Ju Y-J, Park D-J, Kim C-J. Nocardioides sediminis sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 2009;59:280–284 [CrossRef]
    [Google Scholar]
  12. Fan X, Qiao Y, Gao X, Zhang X-H. Nocardioides pacificus sp. nov., isolated from deep sub-seafloor sediment. Int J Syst Evol Microbiol 2014;64:2217–2222 [CrossRef]
    [Google Scholar]
  13. Kim K-H, Roh SW, Chang H-W, Nam Y-D, Yoon J-H et al. Nocardioides basaltis sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 2009;59:42–47 [CrossRef]
    [Google Scholar]
  14. Lee DW, Hyun C-G, Lee SD. Nocardioides marinisabuli sp. nov., a novel actinobacterium isolated from beach sand. Int J Syst Evol Microbiol 2007;57:2960–2963 [CrossRef]
    [Google Scholar]
  15. Lee SD. Nocardioides furvisabuli sp. nov., isolated from black sand. Int J Syst Evol Microbiol 2007;57:35–39 [CrossRef]
    [Google Scholar]
  16. Park SC, Baik KS, Kim MS, Chun J, Seong CN. Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment. Int J Syst Evol Microbiol 2008;58:2619–2623 [CrossRef]
    [Google Scholar]
  17. Tuo L, Dong Y-P, Habden X, Liu J-M, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015;65:1604–1610 [CrossRef]
    [Google Scholar]
  18. Park JH, Lee DH. Plants of Dokdo. Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University (editor). Nature of Dokdo Daegu: Kyeongbuk University Press; 2008; pp.166–221
    [Google Scholar]
  19. Yoon J-H, Kang S-J, Lee C-H, Oh T-K, Tk O. Nocardioides insulae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:136–140 [CrossRef]
    [Google Scholar]
  20. Yoon J-H, Kang S-J, Lee S-Y, Oh T-K, Tk O. Nocardioides terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:2472–2475 [CrossRef]
    [Google Scholar]
  21. Yoon J-H, Kang S-J, Lee M-H, Oh T-K, Tk O. Nocardioides hankookensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008;58:434–437 [CrossRef]
    [Google Scholar]
  22. Ahn J-H, Lim J-M, Kim S-J, Song J, Kwon S-W et al. Nocardioides paucivorans sp. nov. isolated from soil. Journal of Microbiology 2014;52:990–994 [CrossRef]
    [Google Scholar]
  23. Hwang Y-J, Ghim S-Y. Paenibacillus aceris sp. nov., isolated from the rhizosphere of Acer okamotoanum, a plant native to Ulleungdo Island, Republic of Korea. Int J Syst Evol Microbiol 2017;67:1039–1045 [CrossRef]
    [Google Scholar]
  24. Yoon J-H, Kang SJ, Lee SY, Lee MH, Tk O. Virgibacillus dokdonensis sp. nov., isolated from a Korean island, Dokdo, located at the edge of the East Sea in Korea. Int J Syst Evol Microbiol 2005;55:1833–1837 [CrossRef]
    [Google Scholar]
  25. Hwang YJ, Son JS, Ghim SY. Paenibacillus elymi sp. nov., isolated from the rhizosphere of Elymus tsukushiensis, a plant native to the Dokdo Islands, Republic of Korea. Int J Syst Evol Microbiol 2018
    [Google Scholar]
  26. Yoon J-H, Lee ST, Park Y-H. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998;48:187–194 [CrossRef]
    [Google Scholar]
  27. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997;47:249–251 [CrossRef]
    [Google Scholar]
  28. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef]
    [Google Scholar]
  29. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52:1043–1047
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  34. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef]
    [Google Scholar]
  35. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  36. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425
    [Google Scholar]
  38. Felsenstein J. PHYLIP (Phylogeny inference package) version 3.696. 2008;http://evolution.genetics.washington.edu/phylip.html
  39. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  40. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  41. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Evolution 1981;17:368–376
    [Google Scholar]
  42. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Evolution 1980;16:111–120
    [Google Scholar]
  44. Kämpfer P, Irgang R, Poblete-Morales M, Glaeser SP, Cortez-San Martin M et al. Psychromonas aquatilis sp. nov., isolated from seawater samples obtained in the Chilean Antarctica. Int J Syst Evol Microbiol 2017;67:1306–1311
    [Google Scholar]
  45. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria University Press; 1965
    [Google Scholar]
  46. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: Microbial ID; 1990
    [Google Scholar]
  47. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  48. Kawamoto I, Oka T, Nara T. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 1981;146:527–534
    [Google Scholar]
  49. Hamada M, Tamura T, Yamamura H, Suzuki K-I, Hayakawa M. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. Int J Syst Evol Microbiol 2012;62:1731–1735 [CrossRef]
    [Google Scholar]
  50. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  51. Shin YK, Lee J, Chun C, Kim H, Park Y. Notes: isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 1996;6:68–69
    [Google Scholar]
  52. Busse H-J, Schumann P. Polyamine profiles within genera of the class Actinobacteria with LL-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 1999;49:179–184 [CrossRef]
    [Google Scholar]
  53. Evtushenko LI, Krausova VI, Yoon JH. Genus I. Nocardioides Prauser 1976, 61AL. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Ludwig W et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria New York: Springer; 2012; pp.1197–1251
    [Google Scholar]
  54. Kim MK, Srinivasan S, Park M-J, Sathiyaraj G, Kim Y-J et al. Nocardioides humi sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009;59:2724–2728 [CrossRef]
    [Google Scholar]
  55. Lim J-M, Kim S-J, Hamada M, Ahn J-H, Weon H-Y et al. Nocardioides daecheongensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:4109–4114 [CrossRef]
    [Google Scholar]
  56. Cho CH, Lee J-S, An D-S, Whon TW, Kim S-G. Nocardioides panacisoli sp. nov., isolated from the soil of a ginseng field. Int J Syst Evol Microbiol 2010;60:387–392 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003689
Loading
/content/journal/ijsem/10.1099/ijsem.0.003689
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error