1887

Abstract

A xylanolytic bacterial strain, named A59, was isolated from a forest soil consortium in southern Argentina. Strain A59 is a Gram-stain-positive, facultative anaerobic, endospore-forming and rod-shaped bacterium. Its optimal growth conditions are 30 °C (range, 28–37 °C), pH 7 (range, pH 5–10) and it tolerates up to 7 % of NaCl (range, 2–7 %). Chemotaxonomic analysis revealed that strain A59possesses -diaminopimelic acid in the cell wall. It contains menaquinone MK-7 as the predominant isoprenoid quinone and the major fatty acid is anteiso-C (35.1 %), with a moderate amount of C (6.9 %). According to 16S RNA gene sequence analysis, the isolate is phylogenetically placed in the same cluster as BCRC 17757 (99.7 % nucleotide sequence identity) and NBRC 13638 (99.1 %) and is closely related to A10b (98.8 %). However, phylogenetic studies based on the housekeeping gene placed A59 in a separate branch from all other related type strains. Furthermore, the results of whole genome average nucleotide identity analysis (gANI) with related type strains was lower than 91.10 % and the digital DNA–DNA hybridization value was lower than 44.30 %, which are below the threshold values for separating two species. The DNA G+C content was estimated as 46.09 mol%, based on genome sequencing. On the basis of these results, A59 represents a new species of the genus , and we propose the name sp. nov. The type strain is A59 (=DSM 107920=NCIMB 15123).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003686
2019-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/12/3818.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003686&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article]
    [Google Scholar]
  2. Trüper HG. Judicial Commission of the International Committee for Systematics of Prokaryotes The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 2005; 55:513 [View Article][PubMed]
    [Google Scholar]
  3. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) The Firmicutes, Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 Springer; 2010 pp. 269
    [Google Scholar]
  4. Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 2017; 19:19–27 [View Article][PubMed]
    [Google Scholar]
  5. Ghio S, Insani EM, Piccinni FE, Talia PM, Grasso DH et al. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Microbiol Res 2016; 186-187:16–26 [View Article]
    [Google Scholar]
  6. Chen WM, Lin KR, Sheu SY. Paenibacillus lacus sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 2017; 67:1582–1588 [View Article][PubMed]
    [Google Scholar]
  7. Ueda J, Yamamoto S, Kurosawa N. Paenibacillus thermoaerophilus sp. nov., a moderately thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 2013; 63:3330–3335 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P, Busse HJ, Kloepper JW, Hu CH, Mcinroy JA et al. Paenibacillus cucumis sp. nov., isolated from a cucumber plant. Int J Syst Evol Microbiol 2016; 66:2599–2603 [View Article][PubMed]
    [Google Scholar]
  9. Ebeling J, Knispel H, Hertlein G, Fünfhaus A, Genersch E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol 2016; 100:7387–7395 [View Article][PubMed]
    [Google Scholar]
  10. Grady EN, Macdonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article][PubMed]
    [Google Scholar]
  11. Grubb JA, Dehority BA. Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Appl Environ Microbiol 1976; 31:262–267[PubMed]
    [Google Scholar]
  12. Lopardo HA, Predari S, Vay C. Manual de microbiología clínica de la Asociación Argentina de Microbiología. Asociación Argentina de Microbiología 2016 ISBN: 978-987-26716-8-6
    [Google Scholar]
  13. Ferrari AE, Ravnskov S, Wall LG. Crop rotation in no-till soils modifies the soil fatty acids signature. Soil Use Manag 2018; 34:427–436 [View Article]
    [Google Scholar]
  14. Sasser M. Identification of bacteria through fatty acid analysis. In Clement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akadémiai Kiadó; 1990 pp. 199–204
    [Google Scholar]
  15. Hedrick DB, Peacock A, White DC. Interpretation of fatty acid profiles of soil microorganisms. In Margesin R, Schinner F. (editors) Manual of Soil Analysis–monitoring and Assessing Soil Bioremediation Berlín: Springer-Verlag; 2010 pp. 251–259
    [Google Scholar]
  16. Schumann P. Peptidoglycan structure. In Fred R, Aharon O. (editors) Methods in Microbiology Cambridge, MA: Academic Press; 2011 pp. 101–129
    [Google Scholar]
  17. Ghio S, Martinez Cáceres AI, Talia P, Grasso DH, Campos E. Draft genome sequence of cellulolytic and xylanolytic Paenibacillus sp. A59, isolated from decaying forest soil from Patagonia, Argentina. Genome Announc 2015; 3:e01233152015 [View Article][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Lee FL, Tien CJ, Tai CJ, Wang LT, Liu YC et al. Paenibacillus taichungensis sp. nov., from soil in Taiwan. Int J Syst Evol Microbiol 2008; 58:2640–2645 [View Article][PubMed]
    [Google Scholar]
  20. Nakamura LK. Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int J Syst Bacteriol 198434224–34226
    [Google Scholar]
  21. Nelson DM, Glawe AJ, Labeda DP, Cann IK, Mackie RI. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 2009; 59:1708–1714 [View Article][PubMed]
    [Google Scholar]
  22. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  25. Holmes DE, Nevin KP, Lovley DR. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1591–1599 [View Article][PubMed]
    [Google Scholar]
  26. Wang LT, Lee FL, Tai CJ, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 2007; 57:1846–1850 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  30. Yun JH, Lee JY, Kim PS, Jung MJ, Bae JW. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera . Int J Syst Evol Microbiol 2017; 67:1918–1924 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003686
Loading
/content/journal/ijsem/10.1099/ijsem.0.003686
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error