1887

Abstract

A Gram-stain-negative, facultatively anaerobic, motile and rod-shaped bacterium, designated D20, was isolated from the saline Lake Dai in Inner Mongolia, PR China. Growth of strain D20 occurred at 25–45 °C (optimum, 40 °C), pH 4.0–12.0 (optimum, 8.0) and with 0–3 % NaCl (w/v); (optimum, 0–1 %). The results of 16S rRNA gene sequence analysis revealed that strain D20 was most closely related to three species, AX, S2 and K172, with a similarity value of 96.2 %. The major respiratory quinone of strain D20 was ubiquinone-8 (Q-8), and the dominant fatty acids (>10 %) were summed feature 3 (Cω6 and/or Cω7; 39.8 %), C (30.9 %) and summed feature 8 (Cω6 and/or Cω7; 13.5 %). The polar lipid profile contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one aminophospholipid and five unidentified lipids. The DNA G+C content was 67.2 mol% (data from the genome sequence). The estimated genome size was 3.7 Mb. The phenotypic, genotypic and chemotaxonomic differences between strain D20 and its phylogenetic relatives indicated that strain D20 should be regarded as a novel species in the genus , for which the name sp. nov. is proposed. The type strain is D20 (=MCCC 1H00305=KCTC 62586).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003679
2019-12-01
2020-01-27
Loading full text...

Full text loading...

References

  1. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E et al. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 1993;43:135–142 [CrossRef][PubMed]
    [Google Scholar]
  2. Yang GQ, Zhang J, Kwon SW, Zhou SG, Han LC et al. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2013;63:873–878 [CrossRef][PubMed]
    [Google Scholar]
  3. Tschech A, Fuchs G. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 1987;148:213–217 [CrossRef][PubMed]
    [Google Scholar]
  4. Foss S, Harder J. Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 1998;21:365–373 [CrossRef][PubMed]
    [Google Scholar]
  5. Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA et al. Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 1999;49 Pt 3:1045–1051 [CrossRef][PubMed]
    [Google Scholar]
  6. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 2002;178:26–35 [CrossRef][PubMed]
    [Google Scholar]
  7. Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Thauera butanivorans sp. nov., a C2-C9 alkane-oxidizing bacterium previously referred to as 'Pseudomonas butanovora'. Int J Syst Evol Microbiol 2009;59:1576–1578 [CrossRef][PubMed]
    [Google Scholar]
  8. Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM. Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 2001;51:589–602 [CrossRef][PubMed]
    [Google Scholar]
  9. Pal D, Bhardwaj A, Sudan SK, Kaur N, Kumari M et al. Thauera propionica sp. nov., isolated from downstream sediment sample of the river Ganges, Kanpur, India. Int J Syst Evol Microbiol 2018;68:341–346 [CrossRef][PubMed]
    [Google Scholar]
  10. Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G. Taxonomic position of aromatic-degrading denitrifying Pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 1995;45:327–333 [CrossRef][PubMed]
    [Google Scholar]
  11. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018;6:230 [CrossRef][PubMed]
    [Google Scholar]
  12. Liu QQ, Li XL, Rooney AP, du ZJ, Chen GJ. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae. Int J Syst Evol Microbiol 2014;64:3473–3477 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  22. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  23. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019;47:D590-D595 [CrossRef][PubMed]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  25. Qiao N, Xi L, Zhang J, Liu D, Ge B et al. Thauera sinica sp. nov., a phenol derivative-degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek 2018;111:945–954 [CrossRef][PubMed]
    [Google Scholar]
  26. Song B, Young LY, Palleroni NJ. Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol 1998;48 Pt 3:889–894 [CrossRef][PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; pp.607–654
    [Google Scholar]
  29. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  30. Dong X, Cai M. Determinative Manual for Routine Bacteriology Peking: Scientific Press; 2001
    [Google Scholar]
  31. Kroppenstedt RM. Separation of bacterial menaquinones by hplc using reverse phase (rp18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  32. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall BJ, Sikorski J, Smibert RA, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Whington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  34. Yin Y, Wang Y, Tang W, Song L. Thauera phenolivorans sp. nov., a phenol degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek 2017;110:1681–1690 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003679
Loading
/content/journal/ijsem/10.1099/ijsem.0.003679
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error