sp. nov., an extremely halophilic archaeon isolated from a marine saltern Free

Abstract

An extremely halophilic archaeon, strain F13-25, was isolated from a marine saltern located in Isla Cristina, Huelva, on the south-west coast of Spain. The novel strain had pink-pigmented, non-motile, coccoid cells. Optimal growth was achieved at 25 % (w/v) NaCl, pH 7.5 and 37 °C. Strain F13-25 possessed two heterogeneous 16S rRNA genes ( and ) most closely related to D108 (97.6–99.2 % sequence similarity) and TNN28 (95.9–98.8 %). On the basis of the results of gene sequence analysis, strain F13-25 was also closely related to IBRC-M 10043 (89.9 %) and TNN28 (92.3 %). Relatedness values, computed using the Genome-to-Genome Distance Calculator, between strain F13-25 and IBRC-M 10043 and IBRC-M 10760 were 34.6 and 36.2 %, respectively. Average nucleotide identity values based on orthoANI, ANIb and ANIm of strain F13-25 and IBRC-M 10043 and IBRC-M 10760 were 88.0 and 88.8, 87.1 and 87.6 %, and 89.2 and 89.6 %, respectively. All values were far below the threshold accepted for prokaryotic species delineation. The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and one glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content was 65.7 mol% (genome). The results of phylogenetic, phenotypic and chemotaxonomic analyses indicated that strain F13-25 represents a novel species of the genus , for which the name sp. nov., with type strain F13-25 (=CECT 9384=IBRC-M 11176), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003675
2019-11-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/11/3636.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003675&mimeType=html&fmt=ahah

References

  1. Cui HL, Yang X, Gao X, Xu XW. Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae . Int J Syst Evol Microbiol 2011; 61:2682–2689 [View Article][PubMed]
    [Google Scholar]
  2. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Fazeli SA, Spröer C et al. Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis . Int J Syst Evol Microbiol 2014; 64:940–944 [View Article][PubMed]
    [Google Scholar]
  3. Yuan PP, Yin S, Han D, Zhang WJ, Cui HL. Halorientalis brevis sp. nov., Isolated from an Inland Salt Lake of China. Curr Microbiol 2015; 71:382–386 [View Article][PubMed]
    [Google Scholar]
  4. Youssef NH, Ashlock-Savage KN, Elshahed MS. Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 2012; 78:1332–1344 [View Article][PubMed]
    [Google Scholar]
  5. Al-Mailem D, Eliyas M, Khanafer M, Radwan S. Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol 2014; 67:857–865 [View Article][PubMed]
    [Google Scholar]
  6. Oren A, Alterns S. Halophilic Microorganisms And Their Environments Dordrecht: Kluwer Acdemic Pulishers; 2002 pp. 441–469
    [Google Scholar]
  7. Subow NN, Tables O. Commissariat of Agriculture of USSR. Hydro-Meteorological Committee of USSR. Oceanographical Institute of USSR, Moscow 1931
    [Google Scholar]
  8. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  9. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  10. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Laboratory Press; 2001
    [Google Scholar]
  11. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  12. Arahal DR, Dewhirst FE, Paster BJ, Volcani BE, Ventosa A. Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 1996; 62:3779–3786[PubMed]
    [Google Scholar]
  13. Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R et al. Population and genomic analysis of the genus Halorubrum . Front Microbiol 2014; 5:140 [View Article][PubMed]
    [Google Scholar]
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 2004; 186:3980–3990 [View Article][PubMed]
    [Google Scholar]
  23. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article][PubMed]
    [Google Scholar]
  24. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Res Comp Mol Biol 2013158–170
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  30. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  31. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  33. Lin G, Chai J, Yuan S, Mai C, Cai L et al. VennPainter: a tool for the comparison and identification of candidate genes based on venn diagrams. PLoS One 2016; 11:e0154315 [View Article][PubMed]
    [Google Scholar]
  34. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485[PubMed]
    [Google Scholar]
  35. Cowan ST, Steel KJ. Manual para la Identificación de Bacterias de Importancia Médica México: C.E.C.S.A.; 1982
    [Google Scholar]
  36. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  37. Barrow GI, Feltham RKA. Cowan Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  38. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 2012; 1818:1365–1373 [View Article][PubMed]
    [Google Scholar]
  39. Corral P, Gutiérrez MC, Castillo AM, Domínguez M, Lopalco P et al. Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:104–108 [View Article][PubMed]
    [Google Scholar]
  40. Kates M. Techniques of lipidology, laboratory techniques. In Burdon RH, van Knippenberg PH. (editors) Biochemistry and Molecular Biology Amsterdam: Elsevier; 1986 pp. 100–110
    [Google Scholar]
  41. Corcelli A, Lobasso S. Characterization of lipids of halophilic archaea. In Rainey FA, Oren A. (editors) Methods in Microbiology, Extremophiles Amsterdam: Elsevier/Academic; 2006 pp. 585–613
    [Google Scholar]
  42. Edgar RC. MUSCLE: a multiple. sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003675
Loading
/content/journal/ijsem/10.1099/ijsem.0.003675
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed