1887

Abstract

A novel actinomycete, designated strain GLM-1, was isolated from arbuscular mycorrhizal fungal spores from RYA08, collected from Pierre ex Lec. rhizosphere soil in Klaeng, Rayong Province, Thailand. Morphological characteristics of this strain included long chains of rod-like cells and squarish elements. The cell-wall composition of this novel isolate contained -diaminopimelic acid. The whole-cell diagnostic sugars were arabinose and galactose. The predominant menaquinone was MK-9(H). The major fatty acids were iso-C and iso-C. Only phosphatidylethanolamine was detected as a polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain GLM-1 was closely related to SB026 (99.11 %) with a low DNA–DNA hybridization value of 22.6–34.7 %. Genome sequencing revealed a genome size of 10 Mbp. There were obvious distinctions in the average nucleotide identity values between stain GLM-1 and its closely related strains at around 86–93 % (ANIb) and 89–94 % (ANIm). The digital DNA–DNA hybridization values between strain GLM-1 and type strains of phylogenetically related species were 34–55 %. The G+C content of the genomic DNA was 71.8 mol%. Based on these data, strain GLM-1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GLM-1 (=TBRC 9315=NBRC 113658)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003669
2019-08-21
2019-10-15
Loading full text...

Full text loading...

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986;36:29–37 [CrossRef]
    [Google Scholar]
  2. Lee SD. Amycolatopsis ultiminotia sp. nov., isolated from rhizosphere soil, and emended description of the genus Amycolatopsis. Int J Syst Evol Microbiol 2009;59:1401–1404 [CrossRef][PubMed]
    [Google Scholar]
  3. Tang SK, Wang Y, Guan TW, Lee JC, Kim CJ et al. Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol 2010;60:1073–1078 [CrossRef][PubMed]
    [Google Scholar]
  4. Labeda DP, Goodfellow M. Family I Pseudonocardiaceae Embley, Smida and Stackebrandt 1989.205VP emend. Labeda, Goodfellow, Chun, Zhi and Li 2010a. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.1302–1305
    [Google Scholar]
  5. Gya T, Goodfellow M, Genus V. Amycolatopsis Lechevalier, Prauser, Labeda and Ruan 1986, 34VP emend. Lee 2009, 1403. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.1334–1358
    [Google Scholar]
  6. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  7. Embley MT, Smida J, Stackebrandt E. The Phylogeny of mycolate-less wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol 1988;11:44–52 [CrossRef]
    [Google Scholar]
  8. Jamjan W, Suriyachadkun C, Tanasupawat S, Sakai K, Tashiro Y et al. Amycolatopsis silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018;68:1455–1460 [CrossRef][PubMed]
    [Google Scholar]
  9. Oyuntsetseg B, Cho SH, Jeon SJ, Lee HB, Shin KS et al. Amycolatopsis acidiphila sp. nov., a moderately acidophilic species isolated from coal mine soil. Int J Syst Evol Microbiol 2017;67:3387–3392 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang G, Wang L, Li J, Zhou Y. Amycolatopsis albispora sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016;66:3860–3864 [CrossRef][PubMed]
    [Google Scholar]
  11. Tan GY, Robinson S, Lacey E, Goodfellow M. Amycolatopsis australiensis sp. nov., an actinomycete isolated from arid soils. Int J Syst Evol Microbiol 2006;56:2297–2301 [CrossRef][PubMed]
    [Google Scholar]
  12. Zucchi TD, Bonda AN, Frank S, Kim BY, Kshetrimayum JD et al. Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov., mesophilic actinomycetes isolated from arid Australian soils. Antonie van Leeuwenhoek 2012;102:91–98 [CrossRef][PubMed]
    [Google Scholar]
  13. Penkhrue W, Sujarit K, Kudo T, Ohkuma M, Masaki K et al. Amycolatopsis oliviviridis sp. nov., a novel polylactic acid-bioplastic-degrading actinomycete isolated from paddy soil. Int J Syst Evol Microbiol 2018;68:1448–1454 [CrossRef]
    [Google Scholar]
  14. Tatar D, Sazak A, Guven K, Cetin D, Sahin N. Amycolatopsis cihanbeyliensis sp. nov., a halotolerant actinomycete isolated from a salt mine. Int J Syst Evol Microbiol 2013;63:3739–3743 [CrossRef][PubMed]
    [Google Scholar]
  15. Klykleung N, Tanasupawat S, Pittayakhajonwut P, Ohkuma M, Kudo T. Amycolatopsis stemonae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 2015;65:3894–3899 [CrossRef][PubMed]
    [Google Scholar]
  16. Labeda DP, Donahue JM, Williams NM, Sells SF, Henton MM. Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. nov. and Amycolatopsis pretoriensis sp. nov., isolated from equine placentas. Int J Syst Evol Microbiol 2003;53:1601–1605 [CrossRef][PubMed]
    [Google Scholar]
  17. Huang Y, Paściak M, Liu Z, Xie Q, Gamian A. Amycolatopsis palatopharyngis sp. nov., a potentially pathogenic actinomycete isolated from a human clinical source. Int J Syst Evol Microbiol 2004;54:359–363 [CrossRef][PubMed]
    [Google Scholar]
  18. Ames RN, Mihara KL, Bayne HG. Chitin-decomposing actinomycetes associated with a vesicular-arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 1989;111:67–71 [CrossRef]
    [Google Scholar]
  19. Chaiyasen A, Chaiya L, Douds DD, Lumyong S. Influence of host plants and soil diluents on arbuscular mycorrhizal fungus propagation for on-farm inoculum production using leaf litter compost and agrowastes. Biol Agric Hortic 2017;33:52–62 [CrossRef]
    [Google Scholar]
  20. Jargeat P, Cosseau C, Ola'h B, Jauneau A, Bonfante P et al. Isolation, free-living capacities, and genome structure of "Candidatus Glomeribacter gigasporarum," the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 2004;186:6876–6884 [CrossRef][PubMed]
    [Google Scholar]
  21. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963;72:619–629 [CrossRef][PubMed]
    [Google Scholar]
  22. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  23. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
  25. Marcel M. Cutadapt removes adapter sequences from high-through put sequencing reads. EMBnet journal 2011;17:10–12
    [Google Scholar]
  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  27. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  28. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014;24:1384–1395 [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JspeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32: 929–931.Kilian M. Rapid identification of Actinomycetaceae and related bacteria. J Clin Microbiol 1978;8:127–133
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  31. Jacobson E, Grauville W, Fogs CE. Color Harmony Manual, 4th ed. Chicago: Container Corporation of America; 1958
    [Google Scholar]
  32. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  33. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  34. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965;13:236–243[PubMed]
    [Google Scholar]
  35. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982;151:828–837[PubMed]
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  37. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  38. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003669
Loading
/content/journal/ijsem/10.1099/ijsem.0.003669
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error