1887

Abstract

A bacterial strain, designated H-5, was isolated from an artificial reservoir in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain H-5 were Gram-stain-negative, aerobic, motile by means of a single polar flagellum, rod-shaped, covered by large capsules and formed white colonies. Growth occurred at 15–30 °C (optimum, 25 °C), at pH 6–8 (optimum, pH 7) and with 0–0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on the 16S rRNA gene, the methanol dehydrogenase gene and the coding sequences of 92 protein clusters indicated that strain H-5 was affiliated with genera in the family in the class . Strain H-5 was most closely related to Z with a 95.0 % 16S rRNA gene sequence similarity. Strain H-5 showed less than 73.7 % average nucleotide identity and less than 23.6 % digital DNA–DNA hybridization identity compared to the strains of related genera within the family . The predominant fatty acids were summed feature 3 (Cω7 and/or Cω) and C. The major isoprenoid quinone was Q-8 and the DNA G+C content was 58.3 mol%. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one uncharacterized aminophospholipid, one uncharacterized phospholipid and one uncharacterized lipid. On the basis of the genotypic and phenotypic data presented here, strain H-5 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is H-5 (=BCRC 81154=KCTC 62865).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003661
2019-08-19
2019-09-22
Loading full text...

Full text loading...

References

  1. Doronina N, Kaparullina E, Trotsenko Y. The family Methylophilaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes Springer: Verlag Berlin-Heidelberg; 2014; pp.869–880
    [Google Scholar]
  2. Lv H, Sahin N, Tani A. Isolation and genomic characterization of Novimethylophilus kurashikiensis gen. nov. sp. nov., a new lanthanide-dependent methylotrophic species of Methylophilaceae. Environ Microbiol 2018;20:1204–1223 [CrossRef][PubMed]
    [Google Scholar]
  3. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  4. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997;47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  7. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  8. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  14. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  15. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  17. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  18. Ramachandran A, Walsh DA. Investigation of XoxF methanol dehydrogenases reveals new methylotrophic bacteria in pelagic marine and freshwater ecosystems. FEMS Microbiol Ecol 2015;91:fiv105 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  23. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  24. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017;34:2115–2122 [CrossRef][PubMed]
    [Google Scholar]
  25. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016;44:D286–D293 [CrossRef][PubMed]
    [Google Scholar]
  26. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  27. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  28. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Mikrobiol 1970;71:283–294 [CrossRef][PubMed]
    [Google Scholar]
  29. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999;171:73–80 [CrossRef][PubMed]
    [Google Scholar]
  30. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
    [Google Scholar]
  31. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  32. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002;35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  33. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  34. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004;27:43–49 [CrossRef][PubMed]
    [Google Scholar]
  35. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33:26–37 [CrossRef]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.121–161
    [Google Scholar]
  38. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.265–309
    [Google Scholar]
  39. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998;19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  40. Yordy JR, Weaver TL. Methylobacillus: a new genus of obligately methylotrophic bacteria. Int J Syst Bacteriol 1977;27:247–255 [CrossRef]
    [Google Scholar]
  41. Urakami T, Komagata K. Emendation of Methylobacillus Yordy and Weaver 1977, a genus for methanol-utilizing bacteria. Int J Syst Bacteriol 1986;36:502–511 [CrossRef]
    [Google Scholar]
  42. Doronina NV, Trotsenko YA, Kolganova TV, Tourova TP, Salkinoja-Salonen MS. Methylobacillus pratensis sp. nov., a novel non-pigmented, aerobic, obligately methylotrophic bacterium isolated from meadow grass. Int J Syst Evol Microbiol 2004;54:1453–1457 [CrossRef][PubMed]
    [Google Scholar]
  43. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA. Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants. Syst Appl Microbiol 2011;34:477–481 [CrossRef][PubMed]
    [Google Scholar]
  44. Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Lee KC et al. Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper. Antonie van Leeuwenhoek 2013;103:475–484 [CrossRef][PubMed]
    [Google Scholar]
  45. Kaparullina EN, Trotsenko YA, Doronina NV. Methylobacillus methanolivorans sp. nov., a novel non-pigmented obligately methylotrophic bacterium. Int J Syst Evol Microbiol 2017;67:425–431 [CrossRef][PubMed]
    [Google Scholar]
  46. Govorukhina NI, Trotsenko YA. Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int J Syst Bacteriol 1991;41:158–162 [CrossRef]
    [Google Scholar]
  47. Doronina NV, Ivanova EG, Trotsenko YA. Phylogenetic position and emended description of the genus Methylovorus. Int J Syst Evol Microbiol 2005;55:903–906 [CrossRef][PubMed]
    [Google Scholar]
  48. Doronina NV, Kaparullina EN, Trotsenko I. [Methylovorus menthalis, a novel species of aerobic obligate methylobacteria associated with plants]. Mikrobiologiia 2011;80:713–719 [CrossRef][PubMed]
    [Google Scholar]
  49. Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 2006;56:2819–2823 [CrossRef][PubMed]
    [Google Scholar]
  50. Kalyuzhnaya MG, Beck DA, Vorobev A, Smalley N, Kunkel DD et al. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int J Syst Evol Microbiol 2012;62:106–111 [CrossRef][PubMed]
    [Google Scholar]
  51. Jenkins O, Byrom D, Jones D. Methylophilus: a new genus of methanol-utilizing bacteria. Int J Syst Bacteriol 1987;37:446–448 [CrossRef]
    [Google Scholar]
  52. Doronina N, Ivanova E, Trotsenko Y, Pshenichnikova A, Kalinina E et al. Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic bacterium. Syst Appl Microbiol 2005;28:303–309 [CrossRef][PubMed]
    [Google Scholar]
  53. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 2009;59:2904–2908 [CrossRef][PubMed]
    [Google Scholar]
  54. Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA. Methylophilus flavus sp. nov. and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants. Int J Syst Evol Microbiol 2010;60:2623–2628 [CrossRef][PubMed]
    [Google Scholar]
  55. Doronina NV, Gogleva AA, Trotsenko YA. Methylophilus glucosoxydans sp. nov., a restricted facultative methylotroph from rice rhizosphere. Int J Syst Evol Microbiol 2012;62:196–201 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003661
Loading
/content/journal/ijsem/10.1099/ijsem.0.003661
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error