1887

Abstract

A Gram-stain-positive, aerobic, spore-forming, moderately halophilic bacterium, SSKP1-9, was isolated from traditional salted shrimp paste () produced in Samut Sakhon Province, Thailand. This strain grew optimally at 37–40 °C, pH 7.0 and in the presence of 8–16 % (w/v) NaCl. The 16S rRNA gene sequence similarity values between strain SSKP1-9 and TISTR 1535 and TISTR 1549 were 98.7 and 97.2 %, respectively. Based on 16S rRNA gene sequence similarity, strain SSKP1-9 represents a distinct novel species, as shown by phenotypic traits, DNA–DNA hybridization and average nucleotide identity values. In addition, the whole-cell protein profile confirmed the novelty of the taxon. The genomic DNA GC content was 44.6 mol%. The major isoprenoid quinone was MK-7. The cell-wall peptidoglycan contained -diaminopimelic acid. Polar lipid analysis revealed the presence of phosphatidylglycerol, diphosphatidylglycerol, four unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The major cellular fatty acids were anteiso-C, anteiso-C and iso-C. The results of phenotypic and chemotaxonomic characteristics and whole-genome analysis support that strain SSKP1-9 represents a novel species of , for which the name sp. nov. is proposed. The type strain is SSKP1-9 (=JCM 32625=TISTR 2597).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003658
2019-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/11/3529.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003658&mimeType=html&fmt=ahah

References

  1. Yoon JH, Kang KH, Park YH. Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 2002; 52:2043–2048 [View Article][PubMed]
    [Google Scholar]
  2. Guo LY, Wang NN, Wang XQ, Chen GJ, du ZJ et al. Lentibacillus sediminis sp. nov., isolated from a marine saltern. Int J Syst Evol Microbiol 2017; 67:3946–3950 [View Article][PubMed]
    [Google Scholar]
  3. Wang JL, Ma KD, Wang YW, Wang HM, Li YB et al. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample. Antonie van Leeuwenhoek 2016; 109:171–178 [View Article][PubMed]
    [Google Scholar]
  4. Oh YJ, Lee HW, Lim SK, Kwon MS, Lee J et al. Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable. Antonie van Leeuwenhoek 2016; 109:869–876 [View Article][PubMed]
    [Google Scholar]
  5. Sun P, Gao JL, Mao XJ, Zhao XH, Sun JG et al. Lentibacillus populi sp. nov., a moderately halophilic, endophytic bacterium isolated from a poplar tree, and emended description of the genus Lentibacillus . Int J Syst Evol Microbiol 2016; 66:5281–5287 [View Article][PubMed]
    [Google Scholar]
  6. Jung WY, Lee SH, Jin HM, Jeon CO. Lentibacillus garicola sp. nov., isolated from myeolchi-aekjeot, a Korean fermented anchovy sauce. Antonie Van Leeuwenhoek 2015; 107:1569–1576 [View Article][PubMed]
    [Google Scholar]
  7. Jung MJ, Roh SW, Kim MS, Bae JW. Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 2010; 60:1017–1022 [View Article][PubMed]
    [Google Scholar]
  8. Sánchez-Porro C, Amoozegar MA, Fernandez AB, Babavalian H, Ramezani M et al. Lentibacillus persicus sp. nov., a moderately halophilic species isolated from a saline lake. Int J Syst Evol Microbiol 2010; 60:1407–1412 [View Article][PubMed]
    [Google Scholar]
  9. Lee SY, Choi WY, Oh TK, Yoon JH. Lentibacillus salinarum sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 2008; 58:45–49 [View Article][PubMed]
    [Google Scholar]
  10. Lee JC, Li WJ, Xu LH, Jiang CL, Kim CJ et al. Lentibacillus salis sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2008; 58:1838–1843 [View Article][PubMed]
    [Google Scholar]
  11. Yuan S, Ren P, Liu J, Xue Y, Ma Y et al. Lentibacillus halodurans sp. nov., a moderately halophilic bacterium isolated from a salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2007; 57:485–488 [View Article][PubMed]
    [Google Scholar]
  12. Pakdeeto A, Tanasupawat S, Thawai C, Moonmangmee S, Kudo T et al. Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 2007; 57:364–369 [View Article][PubMed]
    [Google Scholar]
  13. Tanasupawat S, Pakdeeto A, Namwong S, Thawai C, Kudo T et al. Lentibacillus halophilus sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 2006; 56:1859–1863 [View Article][PubMed]
    [Google Scholar]
  14. Namwong S, Tanasupawat S, Smitinont T, Visessanguan W, Kudo T et al. Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 2005; 55:315–320 [View Article][PubMed]
    [Google Scholar]
  15. Lim JM, Jeon CO, Song SM, Lee JC, Ju YJ et al. Lentibacillus lacisalsi sp. nov., a moderately halophilic bacterium isolated from a saline lake in China. Int J Syst Evol Microbiol 2005; 55:1805–1809 [View Article][PubMed]
    [Google Scholar]
  16. Jeon CO, Lim JM, Lee JC, Lee GS, Lee JM et al. Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus . Int J Syst Evol Microbiol 2005; 55:1339–1343 [View Article][PubMed]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, United Kingdom: John Wiley and Sons; 1991 pp. 115–175
    [Google Scholar]
  18. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59:992–997 [View Article][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  26. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485[PubMed]
    [Google Scholar]
  27. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809[PubMed]
    [Google Scholar]
  28. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. vol. 208 Cambridge, UK: Cambridge University Press; 1993
    [Google Scholar]
  29. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  30. Hesselberg M, Vreeland RH. Utilization of protein profiles for the characterization of halophilic bacteria. Curr Microbiol 1995; 31:158–162 [View Article]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DEMIDI Inc 1990
    [Google Scholar]
  32. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods. Microbiol 1987; 19:161–206
    [Google Scholar]
  35. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:31–36 [View Article][PubMed]
    [Google Scholar]
  36. Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, Waite D, Davey RP. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front Genet 2013; 4:288 [View Article][PubMed]
    [Google Scholar]
  37. Chen S, Huang T, Zhou Y, Han Y, Xu M et al. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics 2017; 18:80 [View Article][PubMed]
    [Google Scholar]
  38. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  40. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–14 [View Article][PubMed]
    [Google Scholar]
  44. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  45. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  46. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  48. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  49. Hattori M, Oshima K, Kuroyanagi H, Suda W, Sakamoto M et al. NBRP: Genome information of microbial organism related human and environment The Lentibacillus juripiscarius JCM 12147 whole genome shotgun (WGS) project has the project; 2014 https://www.ncbi.nlm.nih.gov/nuccore/BBCA00000000
  50. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  51. Saum SH, Müller V. Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus . J Bacteriol 2007; 189:6968–6975 [View Article][PubMed]
    [Google Scholar]
  52. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112–2120 [View Article][PubMed]
    [Google Scholar]
  53. Diken E, Ozer T, Arikan M, Emrence Z, Oner ET et al. Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. Springerplus 2015; 4:393 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003658
Loading
/content/journal/ijsem/10.1099/ijsem.0.003658
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error