1887

Abstract

A Gram-stain-negative bacterial strain, designated CA10, was isolated from bovine raw milk sampled in Anseong, Republic of Korea. Cells were yellow-pigmented, aerobic, non-motile bacilli and grew optimally at 30 °C and pH 7.0 on tryptic soy agar without supplementation of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain CA10 belonged to the genus , family , and was most closely related to ATCC 27950 (98.75 % similarity). The average nucleotide identity and digital DNA–DNA hybridization values of strain CA10 were 94.4 and 56.9 %, respectively, relative to DSM 16779, being lower than the cut-off values of 95–96 and 70 %, respectively. The predominant respiratory quinone was menaquinone-6; major polar lipid, phosphatidylethanolamine; major fatty acids, iso-C, summed feature 9 (iso-Cω9 and/or C 10-methyl), summed feature 3 (iso-C 2-OH and/or Cω7) and iso-C 3-OH. The results of physiological, chemotaxonomic and biochemical analyses suggested that strain CA10 is a novel species of genus , for which the name sp. nov. is proposed. The type strain is CA10 (=KACC 21234=JCM 33443).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003647
2019-11-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/11/3478.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003647&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. NOTES: New Perspectives in the Classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Kämpfer P, Vaneechoutte M, Lodders N, de Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article][PubMed]
    [Google Scholar]
  3. Lee JE, Hwang EM, Cha CJ, Kim GB. Chryseobacterium aureum sp. nov., isolated from the Han River, Republic of Korea. Int J Syst Evol Microbiol 2019; 69:1628–1633 [View Article][PubMed]
    [Google Scholar]
  4. Pal M, Kumari M, Kiran S, Salwan R, Mayilraj S et al. Chryseobacterium glaciei sp. nov., isolated from the surface of a glacier in the Indian trans-Himalayas. Int J Syst Evol Microbiol 2018; 68:865–870 [View Article][PubMed]
    [Google Scholar]
  5. Guo W, Li J, Shi M, Yuan K, Li N et al. Chryseobacterium montanum sp. nov. isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:4051–4056 [View Article][PubMed]
    [Google Scholar]
  6. Lin SY, Hameed A, Wen CZ, Liu YC, Shen FT et al. Chryseobacterium echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65:3985–3990 [View Article][PubMed]
    [Google Scholar]
  7. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013; 63:3243–3249 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2011; 61:497–501 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P, Chandel K, Prasad GB, Shouche YS, Veer V. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus . Int J Syst Evol Microbiol 2010; 60:2387–2391 [View Article][PubMed]
    [Google Scholar]
  10. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008; 58:26–33 [View Article][PubMed]
    [Google Scholar]
  11. Shimomura K, Kaji S, Hiraishi A. Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 2005; 55:1903–1906 [View Article][PubMed]
    [Google Scholar]
  12. Bernardet JF, Bruun B, Hugo C. The genera Chryseobacterium and Elizabethkingia . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed. vol. 7 New York: Springer: 2006 pp. pp.638–.676
    [Google Scholar]
  13. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  19. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 pp. 21–132
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Charif D, Lobry JR. SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Bastolla U, Roman HE, Vendruscolo M. (editors) Structural Approaches to Sequence Evolution: Molecules, Networks, Populations Berlin Heidelberg: Springer; 2007 pp. 207–232
    [Google Scholar]
  22. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  23. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea . Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  24. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  26. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  29. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of flavobacterium and cytophaga-like bacteria of the international committee on systematics of prokaryotes. Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  30. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  31. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  32. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  33. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Method for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:167–207
    [Google Scholar]
  36. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Nguyen NL, Kim YJ, Hoang VA, Yang DC. Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum . Int J Syst Evol Microbiol 2013; 63:2975–2980 [View Article][PubMed]
    [Google Scholar]
  39. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003647
Loading
/content/journal/ijsem/10.1099/ijsem.0.003647
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error