1887

Abstract

A polyphasic study was undertaken to establish the taxonomic provenance of a rapidly growing strain, CECT 8783, recovered from the plant L. in Yunnan Province, China. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the strain formed a distinct branch within the evolutionary radiation of the genus . The strain was most closely related to DSM 44221 with 98.4 % 16S rRNA gene sequence similarity, but was distinguished readily from this taxon by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity and digital DNA–DNA hybridization values of 79.5 and 21.1 %, respectively. Consequently, the strain is considered, to represent a novel species of for which the name sp. nov is proposed; the type strain is I10A-01893 (=CECT 8783=KCTC 19843=DSM 45590).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003644
2019-08-28
2019-10-14
Loading full text...

Full text loading...

References

  1. Lehmann KB, Neumann R. Atlas und grundriss der bakteriologie und lehrbuch der speciellen bakteriologischen Diagnostik. München 1896
    [Google Scholar]
  2. Chester FD. Report of mycologist: bacteriological work. Del Agric Exp Sta Bull 1897;9:38–145
    [Google Scholar]
  3. Janke A. In Steinkopf T. (editor) Allgemeine Technische Mikrobiologie. I. Teil. Die Mikroorganismen Dresden, Leipzig: 1924; pp.73
    [Google Scholar]
  4. Magee JG, Ward AC. Genus I. Mycobacterium. In Goodfellow M, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.312–375
    [Google Scholar]
  5. Wayne LG, Kubica GP. The mycobacteria. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey's Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp.1435–1457
    [Google Scholar]
  6. Ben Salah I, Cayrou C, Raoult D, Drancourt M. Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov., members of the Mycobacterium avium complex. Int J Syst Evol Microbiol 2009;59:2803–2808 [CrossRef][PubMed]
    [Google Scholar]
  7. Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leão SC et al. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacteriumabscessus subsp. bolletii and designation of Mycobacteriumabscessus subsp. massiliense comb. nov. Int J Syst Evol Microbiol 2016;66:4471–4479 [CrossRef][PubMed]
    [Google Scholar]
  8. Prasanna AN, Mehra S. Comparative phylogenomics of pathogenic and non-pathogenic mycobacterium. PLoS One 2013;8:e71248 [CrossRef][PubMed]
    [Google Scholar]
  9. Wee WY, Dutta A, Choo SW. Comparative genome analyses of mycobacteria give better insights into their evolution. PLoS One 2017;12:e0172831 [CrossRef][PubMed]
    [Google Scholar]
  10. Wang J, Mcintosh F, Radomski N, Dewar K, Simeone R et al. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evol 2015;7:856–870 [CrossRef][PubMed]
    [Google Scholar]
  11. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018;9:9 [CrossRef]
    [Google Scholar]
  12. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  13. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018;9:67 [CrossRef][PubMed]
    [Google Scholar]
  14. Tsukamura M, Yano I, Imaeda T. Mycobacterium moriokaense sp. nov., a rapidly growing, nonphotochromogenic Mycobacterium. Int J Syst Bacteriol 1986;36:333–338 [CrossRef]
    [Google Scholar]
  15. Jensen KA. Reinzuch und typen bestimmung von tuberkelbazillenstämen. Zentralbl Bakteriol 1932;125:222–239
    [Google Scholar]
  16. Lorian V. Differentiation of Mycobacterium tuberculosis and Runyon Group 3 "V" strains on direct cord-reading agar. Am Rev Respir Dis 1968;97:1133–1135 [CrossRef][PubMed]
    [Google Scholar]
  17. American Public Health Association ACS, Association of Official Agricultural Chemists Standard Methods for the Examination of Water and Sewage American Public Health Association; 1920; pp.95
    [Google Scholar]
  18. MacFaddin JF. Media for Isolation–Cultivation–Identification–Maintenance of Medical Bacteria Baltimore: Williams & Wilkins; 1985
    [Google Scholar]
  19. Runyon EH, Karlson AG, Gp K, Wayne LG. Mycobacteriurn Washington, DC: American Society for Microbiology; 1980
    [Google Scholar]
  20. Amaro A, Duarte E, Amado A, Ferronha H, Botelho A. Comparison of three DNA extraction methods for Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium subsp. avium. Lett Appl Microbiol 2008;47:8–11 [CrossRef][PubMed]
    [Google Scholar]
  21. Sangal V, Jones AL, Goodfellow M, Hoskisson PA, Kämpfer P et al. Genomic analyses confirm close relatedness between Rhodococcus defluvii and Rhodococcus equi (Rhodococcus hoagii). Arch Microbiol 2015;197:113–116 [CrossRef][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2 [CrossRef]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  28. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  29. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010;17:337–354 [CrossRef][PubMed]
    [Google Scholar]
  30. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008;24:774–786 [CrossRef]
    [Google Scholar]
  31. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  32. Brown BA, Springer B, Steingrube VA, Wilson RW, Pfyffer GE et al. Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: a cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 1999;49:1493–1511 [CrossRef]
    [Google Scholar]
  33. Kazda J, Muller H-J, Stackebrandt E, Daffe M, Muller K et al. Mycobacterium madagascariense sp. nov. Int J Syst Bacteriol 1992;42:524–528 [CrossRef]
    [Google Scholar]
  34. Shahraki AH, Çavuşoğlu C, Borroni E, Heidarieh P, Koksalan OK et al. Mycobacterium celeriflavum sp. nov., a rapidly growing scotochromogenic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 2015;65:510–515 [CrossRef][PubMed]
    [Google Scholar]
  35. Lehmann KB, Neumann R. Lehmann's medizin, handatlanter X. Atlas und grundriss der bakteriologie und lehrbuch der speziellen bakteriologischen Diagnostik. 2 Aulf. JF Lehmann, München 1899;1–497
    [Google Scholar]
  36. Toyama H, Mizuno S, Toyama H. Mycobacterium pulveris sp. nov., a nonphotochromogenic Mycobacterium with an intermediate growth rate. Int J Syst Bacteriol 1983;33:811–815 [CrossRef]
    [Google Scholar]
  37. Trevisan V. Generi e le Specie delle Batteriacee, Zanaboni and Gabuzzi, Milano. 1889
  38. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013;4:2304 [CrossRef][PubMed]
    [Google Scholar]
  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  40. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016;6:24373 [CrossRef][PubMed]
    [Google Scholar]
  41. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  42. Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013;30:1188–1195 [CrossRef][PubMed]
    [Google Scholar]
  43. Bojalil LF, Cerbon J, Trujillo A. Adansonian classification of mycobacteria. J Gen Microbiol 1962;28:333–346 [CrossRef][PubMed]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  45. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  46. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  47. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  48. Carver T, Harris SR, Berriman M, Parkhill J, Mcquillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012;28:464–469 [CrossRef][PubMed]
    [Google Scholar]
  49. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  50. Minnikin DE, Goodfellow M. Lipid composition in the classification and identification of nocardiae and related taxa. In Goodfellow M, Brownell GH, Serrano JA. (editors) The Biology of the Nocardiae London: Academic Press; 1976; pp.160–219
    [Google Scholar]
  51. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  52. Lechavalier MP, Lechevalier HA. Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. In Prauser H. (editor) The Actinomycetales Jena: Gustav Fischer Verlag; 1970; pp.311–316
    [Google Scholar]
  53. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  54. Sasser MJ. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Microbial ID USA: Inc, Newark, Del; 1990
    [Google Scholar]
  55. Tomioka H, Saito H, Sato K, Dawson DJ. Arylsulfatase activity for differentiating Mycobacterium avium and Mycobacterium intracellulare. J Clin Microbiol 1990;28:2104–2106[PubMed]
    [Google Scholar]
  56. Kilburn JO, Silcox VA, Kubica GP. Differential identification of mycobacteria. V. The tellurite reduction test. Am Rev Respir Dis 1969;99:94–100 [CrossRef][PubMed]
    [Google Scholar]
  57. Kent PT, Kubica GPW. Public health mycobacteriology a guide for the level III laboratory. Atlanta GA 1985
    [Google Scholar]
  58. Ribón W. Chemical isolation and identification of mycobacteria. In Jimenez-Lopez JC. (editor) Biochemical testing: InTech; 2012
  59. Palomino JC, Leão SC, Ritacco V. Tuberculosis 2007: From basic science to patient care. Amedeo Challenge 2007
    [Google Scholar]
  60. Nouioui I, Carro L, Teramoto K, Igual JM, Jando M et al. Mycobacterium eburneum sp. nov., a non-chromogenic, fast-growing strain isolated from sputum. Int J Syst Evol Microbiol 2017;67:3174–3181 [CrossRef][PubMed]
    [Google Scholar]
  61. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog phenotype microarray data. Bioinformatics 2013;29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  62. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012;7:e34846 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003644
Loading
/content/journal/ijsem/10.1099/ijsem.0.003644
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error