1887

Abstract

A halophilic archaeaon, strain LT12, was isolated from saline soil sampled at the Tarim Basin, PR China. The novel strain stained Gram-negative, cells were rod-shaped, and formed light red-pigmented colonies on agar plate. Strain LT12 grew optimally at 3.1 M NaCl, 0.05 M MgCl, 37 °C and pH 7.5. The cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 1.4 M. Based on the results of phylogenetic analyses of the 16S rRNA and genes, strain LT12 was most closely related to CBA1114(94.4–95.9  and 93.6 % similarities, respectively). The average nucleotide identity and DNA–DNA hybridization values between strain LT12 and CBA1114 were 81.0 and 24.3 %, respectively. The major polar lipids of strain LT12 were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three unidentified glycolipids. The DNA G+C content was 67.2 mol % (genome). Based on the phenotypic, chemotaxonomic and phylogenetic properties, strain LT12 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is LT12 (=CGMCC 1.14941=JCM 30667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003643
2019-08-08
2019-08-18
Loading full text...

Full text loading...

References

  1. Oren A. Halophilic microbial communities and their environments. Curr Opin Biotechnol 2015;33:119–124 [CrossRef][PubMed]
    [Google Scholar]
  2. Ventosa A, de La Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 2015;25:80–87 [CrossRef][PubMed]
    [Google Scholar]
  3. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017;163:623–645 [CrossRef][PubMed]
    [Google Scholar]
  4. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015;65:1050–1069 [CrossRef][PubMed]
    [Google Scholar]
  5. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016;109:565–587 [CrossRef][PubMed]
    [Google Scholar]
  6. Song HS, Cha IT, Rhee JK, Yim KJ, Kim AY et al. Halostella salina gen. nov., sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2016;66:2740–2746 [CrossRef][PubMed]
    [Google Scholar]
  7. Han D, Zhu L, Cui HL. Halorussus litoreus sp. nov., isolated from the salted brown alga Laminaria. Int J Syst Evol Microbiol 2019;69:767–772 [CrossRef][PubMed]
    [Google Scholar]
  8. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997;47:233–238 [CrossRef]
    [Google Scholar]
  9. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009;13:31–37 [CrossRef][PubMed]
    [Google Scholar]
  10. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010;60:2398–2408 [CrossRef][PubMed]
    [Google Scholar]
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  15. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAP de novo 2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18 [CrossRef][PubMed]
    [Google Scholar]
  16. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  17. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  18. Creevey CJ, Doerks T, Fitzpatrick DA, Raes J, Bork P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS One 2011;6:e22099 [CrossRef][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  23. Cui HL, Gao X, Yang X, Xu XW. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010;14:493–499 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003643
Loading
/content/journal/ijsem/10.1099/ijsem.0.003643
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error